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In practice, a train-conflict resolution is decentralized around dispatchers each of whom
controls a few segments in a global railway network with her rule-of-thumb to operational
data. Conceptually, the global sub-optimality or infeasibility of the decentralized system is
resolved by a network controller who coordinates the dispatchers and train operators at
the lower layers on a real-time basis. However, such notion of a multi-layer system cannot
be effectual unless the top layer is able to provide a global solution soon enough for the
dynamic lower layers to adapt in a seamless manner. Unfortunately, a train-conflict reso-
lution problem is NP-hard as formally established in this paper and an effective solution
method traded off between computation time and solution quality has been lacking in lit-
erature. Thus, we propose a column-generation-based algorithm that exploits the separa-
bility of the problem. A key ingredient of the algorithm is an efficient heuristic for the
pricing subproblem for column generation. Tested on the real data from the Seoul metro-
politan railway network, the algorithm provides near-optimal conflict-free timetables in a
few seconds for most cases. The performance of the proposed algorithm is compared to the
ones of the previous MIP-based heuristic by Törnquist and Persson (2007) and the priority-
based heuristic by Sahin (1999).

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

An important goal of daily traffic management is to restore the feasibility of a timetable disrupted by unforeseen events
(technical or human failures) with minimal consequences. By nature, this train-conflict resolution is a real-time problem as it
involves the control of trains in operation, and a comprehensive and centralized control of the real size railway network is far
from a feasible idea when the lines are complex and the traffic is heavy. In practice, the railway network is decomposed into
local areas each of which, normally spanning a few railway segments between stations, is controlled by a single dispatcher
based on operational data in an autonomous way. A remedy of the probable sub-optimality or infeasibility of such decen-
tralized system is the notion of multi-layer traffic management: a network controller coordinates the traffic management
of the dispatchers and train operators at the lower layers. Therefore, it is a crucial task of the top layer to compute a global
solution promptly enough for the dynamic lower layers to adapt in a seamless manner. The more computationally efficient
the top layer gets, the more measures can be transferred from the lower layers and integrated into the top layer so that the
global optimality of train-conflict resolution may be enhanced. Furthermore, a major conflict may be resolved only by the
reconstruction of a global timetable.
. All rights reserved.
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However, a train-conflict resolution problem is NP-hard. As shown in this paper, a very simple railway topology (three
stations connected with two single-tracks) makes the problem NP-hard. In a real network which is a concatenation of such
subnetworks, even the sub-optimality of the upstream is easily multiplied to the downstream via delayed trains. Indeed, an
effective method for the problem has not been found in the literature. Perhaps, an exception is the heuristic by Törnquist and
Persson (2007) which has been reported to produce the solutions of very reasonable quality in small computation times for a
certain range of problem size. Unfortunately, when the problem size gets as large as a metropolitan area network, the com-
putation times not only get extensive but also fluctuate significantly on the instances. Such fluctuation is typical result of
commercial codes based on an enumerative method such as the branch-and-bound method.

Therefore, the centralized train-conflict resolution problem requires to guarantee a minimal and predictable computa-
tional effort. An observation is that without train dwelling constraints at stations, the problem is separated into independent
train dispatching problems at segments between stations. A further observation is that when a train schedule is fixed for a
segment, the reduced problem is again a train-conflict resolution problem. Also, the fixed schedule is easily extended to a
feasible global timetable by fixing the schedules in a topological order of segments in the underlying railway network. From
these observations, an economic variant of the column-generation method called the fix-and-regenerate method is particu-
larly promising: at each iteration, after solving the LP-master problem, we fix the most promising column to reduce the size
of the problem. Here, each column corresponds to a feasible train schedule of a segment. To maintain minimal computation,
we use a heuristic instead of an exact method in obtaining a feasible train schedule of a segment.

The algorithm is tested on the real data from the Seoul metropolitan railway network. For most cases, it provides near-
optimal or reasonable conflict-free timetables w.r.t. the total weighted deviation from the original timetable. Its performance
is also compared to the ones of two previous algorithms, one by Törnquist and Persson (2007) and the other by Sahin (1999).
Considering a trade-off between computation time and solution quality, the proposed algorithm outperforms the previous
heuristics. It seems particularly suitable for the centralized approach in the sense that computation times are not only min-
imal but also predictable.

This paper is organized as follows. Section 2 reviews the previous studies on the train-conflict resolution problem. In Sec-
tion 3, the train-conflict resolution problem is formally defined and formulated as a mixed integer program. The intractabil-
ity of the train-conflict resolution problem is explored in Section 4. Section 5 is devoted to the discussion of the column-
generation based heuristic. The heuristic is then tested on the real data from the Seoul metropolitan railway network in com-
parison with the previous heuristics in Section 6. Section 7 provides some concluding remarks and further studies.
2. Previous studies

The train-conflict resolution problem has attracted numerous studies that can be categorized according to a convenient
trichotomy: whether they are focused on the top, middle, or bottom layer as in Table 1.

The studies of the first category aim to find the global optimality of a large railway network. They mainly deal with global
timetables, track re-routing and possible dwell time changes for the restoration of train operation feasibility.

The studies of the second category model the micro levels of traffic management. They manage traffics in a few segments
of a large railway network and focus on the decentralized conflict resolution of a dispatcher who controls the dispatching
sequence and the routes of trains. Such studies can be classified further according to how the headway safety time is en-
forced. Some studies (Kraay et al., 1991; Cai and Goh, 1994; Cai et al., 1998; Sahin, 1999; Dessouky et al., 2006) enforce each
train to observe the minimum and maximum values of its transit time over each segment. On the other hand, the others
(Mascis and Pacciarelli, 2002; D’Ariano et al., 2007a; Mazzarello and Ottaviani, 2007; Mascis et al., 2008) explicitly model
the blocks of segments and prevent two consecutive trains from being located in the same block in the same epoch. However,
to reduce the computational complexity of the problem, they rely on the average speeds of trains.

The distinction between the studies on the middle and bottom layers does not appear as clear as between the top two
layers. However, the studies on the bottom layer mainly deal with the real-time speed controls in complying with the con-
trols from the middle layer. The bottom layer checks the feasibility of the average train speeds and dispatching sequences
Table 1
Literature summary.

Layer Top Middle Bottom

Controller Network controllers Dispatchers Dispatcher/Drivers

Subjects Railway network A few segments Operational Trains

Decision variables Global time table, track re-routing, dwell time
change

Mainly sequencing, partially re-routing Mainly speed control,
partially sequencing

Reference Carey (1994a,b), Carey and Lockwood (1995),
Kraay and Harker (1995), Higgins et al. (1996),
Caprara et al. (2002, 2006), Törnquist (2007),
Törnquist and Persson (2007), and Cacchiani
et al. (2008)

Kraay et al. (1991), Cai and Goh (1994, 1998),
Sahin (1999), Mascis and Pacciarelli (2002),
Dessouky et al. (2006), D’Ariano et al. (2007a),
Mazzarello and Ottaviani (2007), Mascis et al.
(2008), and Sahin (1999)

D’Ariano et al. (2007b),
Mazzarello and
Ottaviani (2007), and
Mascis et al. (2008)
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from the middle layer after taking account of deceleration and acceleration. If not, it informs the middle layer of the time
epochs during which the system becomes infeasible and recommends the new speeds of trains. Accordingly, the middle layer
generates a new dispatching sequence of the trains based on the recommended speeds. The procedure is repeated until a
feasible set of the speeds and dispatching sequences of trains is obtained (D’Ariano et al., 2007b; Mazzarello and Ottaviani,
2007; Mascis et al., 2008).

The timetabling problem is closely related to the train-conflict resolution problem in the sense that it also computes a train
schedule over a given time horizon for a global network, thereby considering the same kind of constraints as a train-conflict
resolution problem at the top layer. However, the timetabling problem pursues a maximal profit from the satisfied demands.
As pointed out by Brannlund et al. (1998), the principles of timetabling problem algorithms can be applied to the train-con-
flict resolution problem at the top layer. However, such methods (Carey, 1994a,b; Carey and Lockwood, 1995; Brannlund
et al., 1998; Caprara et al., 2002, 2006; Cacchiani et al., 2008), without considering the restriction on computation times,
are reported to require too excessive computational efforts for train-conflict resolution purposes.

From train-conflict resolution or timetabling models proposed in the literature, the one proposed by Törnquist and Pers-
son (2007) seems the closest to ours. As compared in detail to our MIP-model in the next section, a difference in our model is
the consideration of the platform assignment to trains within a station. Regarding the solution method, they solved, by a
commercial code, an MIP-formulation augmented with the linear cuts reflecting a set of additional routing strategies that
exclude some ‘‘impractical” solutions. These cuts are not valid in the ordinary sense that they may exclude some feasible
solutions. But, as demonstrated in their paper (Törnquist and Persson, 2007) and also in our comparison test, for a certain
range of problem size, such strategies seem very effective and produce near-optimal solutions in significantly reduced com-
putation times in comparison to the same approach without the cuts.

From our experience, however, the frequency of trains, the multiplicity of tracks, and the time horizon of the problem are
the three major factors in determining computational efforts required for a problem instance. Unfortunately, when these fac-
tors get as large as in a metropolitan railway network, the computation times of the heuristic (Törnquist and Persson, 2007)
not only get extensive but also fluctuate significantly on the instances. This is typical result of a commercial code based on an
enumerative method such as the branch-and-bound method.

This paper is motivated by the goal of finding an efficient method for the top layer train-conflict resolution for the Seoul
metropolitan railway network, many of whose segments between stations are double-tracked with high train frequencies,
e.g. 15 trains per hour in average.

3. The problem

3.1. Some terminologies

Definition 3.1 (Railway networks). By a railway network, we mean an undirected graph consisting of the nodes of stations
and the edges of segments. A segment is the set of tracks connecting two adjacent stations.

This definition reflects that the model proposed in this paper does not consider the routing of trains within a station.

Definition 3.2 (Train timetables). A train timetable is the set of quadruples (station,arrival time,depature time,track
assignment) for all trains and the stations which they visit over a predetermined time horizon.
Definition 3.3 (Train-conflicts). By a train-conflict, we mean a situation in which two or more trains claim resources in an
infeasible manner, namely, in the way that violates a safety regulation.

To this broad definition, we add that in most practical cases, conflicts arise when a set of trains fail to respect the safe
headway times due to delays.

Problem 3.4 (Train-conflict resolution problem).

Input A railway network, a timetable, and a set of train-conflicts.
Output A conflict-free timetable with the minimum total weighted deviation w.r.t. the original timetable which satisfies

the constraints on the earliest departure times, the headway times, the transit times, and the dwelling times.

3.2. Assumptions

Our train-conflict resolution model relies on the following restrictions.

Assumption 3.5. Each station has enough number of platforms.

As mentioned earlier, this is motivated by the empirical data from KORAIL (Korea Railroad) which shows that the stations
of Seoul metropolitan area have enough number of platforms for train-conflict resolution. Indeed, in the experiment of Sec-
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tion 6, we will observe that the number of platforms required by our algorithm does not exceed the number of platforms in
any station. If this is not the case, our model does not guarantee a feasible platform assignment.

Assumption 3.6. A railway network is a tree.
Assumption 3.7. Each track is unidirectional.
Assumptions 3.6 and 3.7 also reflects the Seoul metropolitan railway network. Based on these assumptions, we duplicate

each segment between two adjacent stations. Then, two adjacent stations have two parallel segments to which we assign
opposite directions. We can view a segment as a set of tracks with the same direction. See Fig. 1.

Now choose a station in the railway network as the root of a tree. A segment is called inbound if it is oriented towards the
root, and outbound otherwise. Then every train is one of the following types: (1) an inbound train which only traverses in-
bound segments, (2) an outbound train which only traverses outbound segments, and (3) an in-outbound train which tra-
verses inbound segments first and outbound segments afterwards. An in-outbound train can be thought of as two trains. One
of them traverses inbound segments from the origin to a certain station from which the other traverses outbound segments
to the destination. For example, in Fig. 1, an in-outbound train from station 2 to station 4 is the concatenation of an inbound
train from station 2 to the root and an outbound train from the root to station 4. Then, we can obtain a feasible timetable of
all trains by first computing the timetable of inbound trains and then that of outbound trains. This method does not guar-
antee an optimal solution. But, at the same time, it does not violate the optimality by much since there are few in-outbound
trains in practice. For instance, there are no in-outbound trains in the Seoul metropolitan area. Thus the method guarantees
the optimality. In addition, it is pragmatic since the problem size can be halved, corresponding to our purpose. Therefore, we
will solve the conflict resolution problem by devoting a segment to two opposite directions.

The train-conflict resolution problem can be formulated as an MIP. Table 2 summarizes constraints considered in the lit-
erature of Table 1. The second column indicates the equation numbers of the corresponding features of the MIP-model (1)–
(10) presented below. Note that intra-track headway times, dispatch sequencing, and dwelling time requirements at stations
are the most common features of the MIP-models for the train-conflict resolution problem or timetabling problem.

Regarding the dwelling modes of trains, notice that even when a station is originally not a stopping station for a train, the
total deviation of a new timetable can be smaller when the train is allowed to dwell at the station. If so, the train will have a
longer transit time on the incident segments due to deceleration and acceleration. Such difference may be significant for a
Fig. 1. A railway network.

Table 2
MIP-model comparison.

Constraints Our model Group A Group B Group C Group D Group E

Multiple tracks (3) U U

Intra-track headway time (6) U U U U U

Inter-track headway time (7)
Train-dispatch sequencing (4) U U U U U

Dwelling modes at stations Only in postprocessing U

Dwelling time requirements (10) U U U U U

Platform assignments U

Bi-direction U U U

Group A Carey (1994a), DÁriano et al. (2007a,b), Dessouky et al. (2006), Mascis and Pacciarelli (2002), Mascis et al. (2008),
Mazzarello and Ottaviani (2007), Törnquist (2007), and Törnquist and Persson (2007)

Group B Cacchiani et al. (2008), Caprara et al. (2002), Caprara et al. (2006), and Carey and Lockwood (1995)
Group C Cai and Goh (1994), Cai et al. (1998), Carey (1994b), Higgins et al. (1996), Kraay and Harker (1995), and Sahin (1999)
Group D Zhou and Zhong (2005)
Group E Kraay et al. (1991)
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metropolitan network where segments are relatively short and trains are more frequent. Zhou and Zhong (2005), to the best
of the author’s knowledge, were first to explicitly incorporate the dwelling modes of trains as decision variables into their
timetabling model for a high speed train line where the difference is also significant. However, it would be too excessive for
our goal of achieving minimal computation to design an algorithm searching over all possible combinations of the dwelling
modes of trains over segments. Thus, in our algorithm, we initially fix the dwelling modes of trains and search a better com-
bination in the postprocessing.

The feature of our model is the intra-track safe headway time: on the same segment, the departure or arrival times of any
pair of consecutive trains should not be too close even if they use different tracks of a segment. This is to enforce the safe
headway time at the points where tracks cross.

As mentioned earlier, the platform assignment is not considered in our model as in most studies with a few exceptions
(Carey, 1994a; Törnquist and Persson, 2007). However, in the actual experiment, Carey (1994a) only considered the in-
stances with a single platform in each direction.

3.3. An MIP-formulation

Throughout the paper, we will reserve Q, P, and I to denote the set of stations, segments, and trains, respectively. P and I
here are either all inbound or all outbound. Also, Ip � I denotes the set of trains traversing segment p.

The parameters and decision variables of the proposed MIP-formulation are as follows:
Parameters

� ci
p = cost of the unit departure delay of train i at segment p.

� wi
p = cost of the unit deviation (delay or early arrival) from original arrival time of train i at segment p.

� di
p = original departure time of train i at segment p.

� ai
p = original arrival time of train i at segment p.

� hq = safe headway time between two consecutive trains arriving or departing at station q via the same track.
� hm = safe headway time between two consecutive trains arriving or departing at a station via different tracks.
� si

q = minimum dwelling time of train i at station q (defined as 0 if q is not a stopping station for train i).
� ti

pð��Þ = minimum transit time over segment p of train i when dwelling mode of i at the two end stations are ��; thus
�� = ss, sp, ps, or pp meaning, in their order, stop–stop, stop–pass, pass–stop, or pass–pass.
� ti

pð��Þ = maximum transit time over segment p of train i with dwelling mode ��.
� bi

p = earliest possible (nonnegative) departure time of train i at segment p.
� np = number of tracks of segment p.
� M = a sufficiently large positive number.

Decision variables

� Di
p = departure time of train i at end station q of segment p = (q,r).

� Ai
p = arrival time of train i at end station r of segment p = (q,r).

� Ei
p = difference between original arrival time, ai

p and actual arrival time, Ai
p.

� Zi
p;k ¼ 1 if train i is assigned to the kth track of segment p and 0 otherwise.

� Xij
p ¼ 1 if train i departs earlier than train j at end station q of segment p = (q,r) and 0 otherwise.

� Yij
p ¼ 1 if train i arrives earlier than train j at end station r of segment p = (q,r) and 0 otherwise.

� ��i
p ¼ 1 if train has a dwelling mode � � at segment p and 0 otherwise, where �� = ss, sp, ps, or pp meaning in their order,

stop–stop, stop–pass, pass–stop, or pass–pass.

Objective function
Our objective is to minimize the total weighted deviation (namely, both earliness and tardiness) between original and

rescheduled timetables of trains:
min
X
p2P

X
i2Ip

ci
pðD

i
p � di

pÞ þwi
pEi

p

n o
: ð1Þ
Constraints

Deviation from the original timetable. These constraints are two linear constraints that are equivalent to
Ei

p P Ai
p � ai

p

��� ��� : 8p 2 P; 8i 2 Ip,
Ai
p � ai

p 6 Ei
p and � Ai

p � ai
p

� �
6 Ei

p: ð2Þ



414 Y.-H. Min et al. / Transportation Research Part B 45 (2011) 409–429
Track assignment. If a segment p has multiple tracks, a train i traversing segment p has to choose exactly one track: "p 2 P,
"i 2 Ip,

Xnp

k¼1

Zi
p;k ¼ 1: ð3Þ

Train-dispatch sequencing. A departing sequence of trains should be equal to their arrival sequence over the same track:
"p 2 P and "i, j 2 Ip with i – j, k = 1, . . . ,np,

2� Zi
p;k � Zj

p;k þ Xij
p � Yij

p

� �
P 0 and

2� Zi
p;k � Zj

p;k � Xij
p � Yij

p

� �
P 0:

ð4Þ

Earliest departure times of trains. Each train i should observe its earliest possible departure time: "p 2 P, "i 2 Ip,

Di
p P bi

p: ð5Þ

Intra-track headway safety. Two trains i and j traversing segment p via track k have to observe the minimum headway
time: "p = (q,r) 2 P and "i, j 2 Ip with i – j, k = 1, . . . ,np,

M 1� Zi
p;k

� �
þM 1� Zj

p;k

� �
þ

M 1� Xij
p

� �
þ Dj

p � Di
p P hq;

M 1� Xij
p

� �
þ Aj

p � Ai
p P hr;

MXij
p þ Di

p � Dj
p P hq; and

MXij
p þ Ai

p � Aj
p P hr :

8>>>>>>><
>>>>>>>:

ð6Þ

Inter-track headway safety. Two trains i and j traversing segment p have to observe the minimum headway time: "p 2 P
and "i, j 2 Ip with i – j,

M 1� Xij
p

� �
þ Dj

p � Di
p P hm;

M 1� Yij
p

� �
þ Aj

p � Ai
p P hm;

MXij
p þ Di

p � Dj
p P hm; and

MYij
p þ Ai

p � Aj
p P hm:

ð7Þ

Dwelling modes and corresponding transit times at segments. For each segment p = (q,r), each train chooses a dwelling
mode. (However, if station q is originally a dwelling station, then a train has no other choice than to stop at q.) Accord-
ingly, the transit time of each train is determined between its lower- and upper-bounds: "p = (q,r) 2 P and "i 2 Ip,

SSi
p þ SPi

p þ PSi
p þ PPi

p ¼ 1;

SSi
p þ SPi

p ¼ 1; added if q is originally a dwelling station of i;
� � ð8Þ

ti
pðssÞSSi

p þ ti
pðspÞSPi

p þ ti
pðpsÞPSi

p þ ti
pðppÞPPi

p 6 Ai
p � Di

p; and

ti
pðssÞSSi

p þ ti
pðspÞSPi

p þ ti
pðpsÞPSi

p þ ti
pðppÞPPi

p P Ai
p � Di

p:
ð9Þ

Dwelling time requirements. Each train has to dwell for a positive predetermined time at station q if it stops at station q.
Otherwise the dwelling time should be zero: "q 2 Q, for each pair of consecutive segments incident to q, p0 = (s,q) and
p = (q,r), and for each train traversing p0 and p, namely "i 2 Ip0 \ Ip, we have

si
q SSi

p þ SPi
p

� �
6 Di

p � Ai
p0 6 M SSi

p þ SPi
p

� �
and

si
q SSi

p0 þ PSi
p0

� �
6 Di

p � Ai
p0 6 M SSi

p0 þ PSi
p0

� �
:

ð10Þ

Notice that each pair of (10) also implies SSi
p0 þ PSi

p0 ¼ SSi
p þ SPi

p so that the dwelling modes over p0 and p are consistent.

Notice that the constraints from (10) are the only coupling constraints that control the movement of a train over adjacent
segments sharing the same station. Hence, if (10) is relaxed, the MIP-model is separable into the independent subproblems
with respect to the segments p 2 P. More specifically, each independent subproblem is a train-conflict resolution problem on
a single segment. Conversely, a feasible solution of the original problem, namely a global timetable, is the combination of the
timetables from the subproblems that satisfy the coupling constraints of (10). In Section 5, we will propose an algorithm for
the MIP-model (1)–(10) relying on this separability.
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4. Intractability of train-conflict resolution

As pointed out in Törnquist (2006), a formal proof of the intractability of train-conflict resolution is lacking in the liter-
ature. In this paper, we show that a very simple version of our problem consisting of two single-tracked segments (hence of
three stations) is strongly NP-hard. To do so, we use a reduction from the strongly NP-hard two machine flow shop problem
with transportation delays and unit processing times, denoted by F2jpij ¼ 1; tj; rjj

P
Cj in the conventional notation of the

field (Brucker et al., 2004).

Problem 4.1. Each job j = 1,2, . . . ,n, released by time rj, has to be processed by two machines i in the order of i = 1,2. The pij

represents the processing time of job j on machine i. We assume a unit processing time pij = 1 for all i and j. But, there is a
variable transportation delay tj of job j between its completion time on machine 1 and the moment it becomes available for
machine 2. Let Cj denote the completion time of job j on machine 2. Then our objective is to find a combined processing
sequence of jobs on two machines that minimizes the total completion time

P
Cj.
Theorem 4.2. The train-conflict resolution problem is strongly NP-hard.
Proof. Given an instance of Problem 4.1, construct an instance of the train-conflict resolution problem, referred to as SP, as
follows: SP has two single-tracked segments p = 1 and 2 connecting three stations q = 1, 2, and 3. Every station has a unit safe
headway time. We assume that the n jobs have been sorted in a nondecreasing order of transportation delays:
t1 6 t2 6 � � � 6 tn. Construct n trains j = 1,2, . . . ,n whose transit times are all units on every segment. Train j is originally sched-
uled to depart from station 1 at �n + j and arrive at station 2 at �n + j + 1: dj

1 ¼ �nþ j and aj
1 ¼ �nþ jþ 1. After dwelling for

tj at station 2, it departs from station 2 at �n + j + tj + 1 and arrives at station 3 at �nþ jþ tj þ 2 : sj
2 ¼ tj; dj

2 ¼ �nþ jþ tj þ 1,
and aj

2 ¼ �nþ jþ tj þ 2. Its earliest possible departure time bj
1 at station 1 is rj. Finally, regarding the coefficients of the

objective function, we only consider the deviation cost of arrival time at station 3 by a unit weight: cj
1 ¼ cj

2 ¼ wj
1 ¼ 0, and

wj
2 ¼ 1.

First of all, to see SP is a legitimate instance of the train-conflict resolution problem, notice that the original train
schedules constructed above constitute a conflict-free timetable as t1 6 t2 6 � � � 6 tn. Since the departure of each train has
been delayed by bj

1 � dj
1, we need to construct a new conflict-free timetable. From our construction, a departure delay does

not incur a cost and no early arrival may occur. Thus the objective of SP is to minimize the sum of arrival delays at station 3
and it is equivalent to minimization of the sum of arrival times.

Now we establish the equivalence of SP and Problem 4.1. To do so, it suffices to show that there exists a feasible schedule
for the instance of Problem 4.1 with the total completion time 6C if and only if there exists a conflict-free timetable of SP
whose total weighted deviation from the original timetable is 6 C �

P
ja

j
2.

For the ‘‘only if” part, suppose we are given a feasible schedule of Problem 4.1 with the total completion time 6C.
Construct a conflict-free timetable of SP as follows: for each train, set the departure time at station 1 and the arrival time at
station 2, respectively, to the starting and completion time of the corresponding job on machine 1. Since every job has a unit
processing time, every train observes the safe headway time. Similarly, for each train, let the departure time at station 2 and
the arrival time at station 3, respectively, be the starting and completion time of the corresponding job on machine 2. Since
sj

2 ¼ tj, each train dwells at least for tj units of time at s2. Similarly, the train schedules on segment (2,3) also satisfy the safety
requirement. Since the sum of train arrival times at station 3 is

P
jA

j
2 ¼

P
jCj 6 C, the objective value of the constructed

timetable of SP is
P

jA
j
2 �

P
ja

j
2 6 C �

P
ja

j
2. The proof of ‘‘if” part is almost identical and hence omitted.

Finally, it is easy to see from the construction the largest absolute value of a number in SP is bounded by the order of the
largest number from the instance of Problem 4.1. Thus the strong NP-hardness of Problem 4.1 implies the strong NP-
hardness of the train-conflict resolution problem. h
5. The algorithm

This section is devoted to the development of an efficient algorithm relying on the separability of the problem discussed
in Section 3.3. Typically, this separability is exploited by a problem decomposition technique such as the Lagrangian relax-
ation and the column-generation method.

Of these alternatives, the latter appears more suitable to our problem. In the Dantzig–Wolfe reformulation of the MIP-
model (1)–(10), the columns correspond to the timetables of the subproblems of segments. Thus, generating columns for
solving the (primal) LP-relaxation via the simplex method has a very natural interpretation of searching timetables of the
subproblems of segments that are promising in terms of current prices. This enables us to easily implement various heuristic
ideas to accelerate the simplex method. For instance, by single pricing, we may consider multiple promising timetables when
entering variables. This is not possible in the (dual) Lagrangian relaxation, where only single timetable corresponds to the
current dual solution. Furthermore, the subgradient optimization method to solve the Lagrangian relaxation involves numer-
ical steps, such as the choice of step sizes, that affect the convergence of solutions. Hence, the simplex method steps seem
much more transparent for implementation.



416 Y.-H. Min et al. / Transportation Research Part B 45 (2011) 409–429
The column generation algorithm for solving the LP-relaxation of an IP-problem, combined with an implicit enumeration
scheme, can be used to compute an optimal solution of IP-problem. Such an exact method, however, requires excessive com-
putational efforts for our purpose of the train-conflict resolution problem. An observation is that if we fix the timetable over
a segment, then the reduced problem is again a train-conflict resolution problem. Furthermore, the feasibility of the com-
bined timetable is easily maintained if timetables are fixed in a topological order of segments with respect to the underlying
railway network.

Due to the correspondence between the timetables of segments and the columns, the sequential timetable-fixing idea can
be naturally combined with the column generation algorithm to compute a feasible solution without resorting to an enumer-
ation step. A similar idea has been used in Caprara et al. (2002, 2006) and Cacchiani et al. (2008). They consider the routing
subproblems of trains which are obtained by relaxing the headway safety constraints. Also, in this case, a feasible solution is
easily obtained by sequentially fixing the routes of trains. However, their approach is not applicable to our model since it is
based on the discretization of time axis. Furthermore, as the number of trains is an order of magnitude larger than the num-
ber of segments especially in a metropolitan network, exploiting the separability of the problem with respect to trains may
deteriorate the quality of solution.

In Section 5.1, we provide an LP-relaxation of the MIP-model (1)–(10) based on the Dantzig–Wolfe decomposition con-
sidering (10) as coupling constraints. Section 5.2 is devoted to an efficient heuristic to solve the pricing subproblems. Finally,
Section 5.3 combines these two into the main train-conflict resolution algorithm.

5.1. Dantzig–Wolfe decomposition

Consider the problem consisting of (1)–(9) from the MIP-model which is, as observed earlier, the set of independent prob-
lems each of which is to find a conflict-free timetable of minimum weighted deviation for each segment p 2 P. Let
Tp ¼ fsp;1; . . . ; sp;kpg be the set of the conflict-free timetables for segment p 2 P (hence kp means the total number of con-
flict-free timetables for segment p 2 P).

As mentioned in Section 3.1, our algorithm initially fixes the dwelling modes so that every train stops at every station:
SSi

p  1, for all p and i 2 Ip. Then, by expressing each integer feasible solution of a subproblem as sp ¼
Pkp

t¼1sp;tkp;t using bin-
ary variables kp,t 2 {0,1} with

Pkp
t¼1kp;t ¼ 1, the MIP-model (1)–(10) can be restated as follows:
min
X
p2P

X
i2Ip

Xkp

t¼1

ci
pDi

p;t þwi
pEi

p;t

� �
kp;t � ci

pdi
p

 !
ð11Þ

s:t:
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Di
p;tkp;t �

Xkp0

t0¼1
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p0 ;t0kp0 ;t0 P si

q; 8q 2 Q ; 8p0 ¼ ðs; qÞ; p ¼ ðq; rÞ;

8i 2 Ip \ Ip0 ð12Þ
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t¼1

kp;t ¼ 1; 8p 2 P ð13Þ

kp;t 2 f0;1g; 8p 2 P; t ¼ 1; . . . ; kp: ð14Þ
Here, Di
p;t ; Ai

p;t , and Ei
p;t , respectively, are the departure time, arrival time, and arrival deviation of train i over segment p

according to the tth timetable, sp,t.
Now we consider the LP-relaxation obtained from the binary IP, (11)–(14) by replacing (14) with kp,t P 0. The column

generation algorithm applied to this primal LP-relaxation, called LP-master, or LPM consists of the following steps.

Initialization Construct a restricted LPM or RLPM which is obtained by restricting LPM to the columns that are properly
chosen from each and every segment. Solve the RLPM to get the primal optimal solution k as well as the dual
optimal solution (p,l), where p ¼ pi

q

� �
and l = (lp) are the dual variables corresponding to constrains (12) and (13),

respectively.
Pricing Generate a column whose reduced cost (or price) is negative. If there is no such column, the current solution k is
an optimal solution of LPM. Otherwise, enter such a column to get a new pair of solutions k0 and (p0,l0) and repeat this
step.

The pricing step amounts to finding a variable kp,t of the tth timetable over segment p = (q,r) whose reduced cost is neg-

ative. In terms of the dual variables (p,l), the reduced cost is given by
P

i2Ip
ci

p � pi
q

� �
Di

p þ pi
rA

i
p þwi

pEi
p

� �
� lp. Thus, gener-

ating a negative reduced cost column of the pricing step is equivalent to the following subproblem:
ðPSPÞfp ¼ min
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p þ pi
rA

i
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If fp P 0 for all segments p, the current solution is optimal. Otherwise, we can enter the corresponding column to RLPM to
improve the solution. Thus, it is essential to solve the pricing subproblem (15) fast enough, which is the theme of the next
section.

5.2. A heuristic for pricing subproblem

From (15), the pricing subproblem is a train-conflict resolution problem of finding the timetable of a segment optimal
with respect to the weights modified by the current values of dual variables (p,l). Although the computational complexity
of this single-segment train-conflict resolution problem is an interesting open problem, it bears some similarity with the NP-
hard scheduling problem of minimizing weighted earliness and tardiness in Garey et al. (1988). As in Section 4, regarding
each train and track as a job and a machine, respectively, two problems are identical except that in (15) a single machine
can process two jobs if neither the starting nor finishing times of two jobs are too close to each other. Furthermore, our prob-
lem has an additional complication involving release times. Thus we conjecture that the pricing subproblem is an intractable
problem and propose a heuristic instead of an exact method.

A scheduling problem of minimizing weighted earliness and tardiness typically has two phases (Yano and Kim, 1991; Da-
vis and Kanet, 1993). In the first phase, a job processing sequence is determined. Then, based on the sequence, the second
phase finds the starting time of each job to minimize the objective value, i.e. the weighted earliness and tardiness. An alter-
native approach is a rule-based method which dispatches jobs based on the lookahead function, a measure of the effects of job
delay to the overall objective (Valente and Alves, 2005).

Our heuristic is a hybrid of these two approaches: we enumerate some partial sequences of trains and choose the best one
according to a lookahead function defined for the train-conflict resolution problem.

Algorithm 5.1. Pricing heuristic

Step 1: Sort the trains in an increasing order of the earliest possible departure times. Repeat Steps 2–4 until all schedules of
trains are fixed.

Step 2: Of the trains whose schedules are not fixed yet, choose the first three earliest trains in the earliest possible departure
time. Then we have 6(=3!) possible sequences of the three trains.

Step 3: For each sequence from Step 2, do

for each of the three trains in their order in the sequence, do

for each track, assign to the train the departure and arrival times that minimize the weighted deviation from its
original schedule and are conflict-free with the trains already assigned to the track.
Choose a track with the minimum weighted deviation.

(See Example 5.2 below.)
Step 4: Among the schedules of the six sequences, choose one whose lookahead function (16) is minimum:
X3

i¼1

ci
p � pi

q

� �
Di

p þwi
pAi
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n o.
ci

p � pi
q þwi

p

� �
: ð16Þ
Fix the schedule of the first train.
Example 5.2. Fig. 2 illustrates Step 3. Consider a double-tracked segment p = (q,r). The intra-track and inter-track safe
headway times are 3 and 2, respectively, at both end-stations. Let the first three trains be A, B, and C whose original depar-
ture time, arrival time, and minimum transit time triples are (0,9,9), (7,11,4), and (10,14,4), respectively. The maximum
transit time is set to be 1 for every train. Also, assume the earliest possible departure times are 5 for A and the same as
the original schedule for the other two. Finally, for simplicity, assume there is no train assigned to any of the tracks. For
the sequence (A,B,C), for instance, Step 3 assigns the departure time, the arrival time, and the track to each of three trains
as follows.

First, it is easy to see that train A can start at its earliest possible departure time on track 1 which is currently empty. To
minimize the weighted deviation, it travels at its minimum transit time: the assigned departure and arrival time pair is
(5,14).

Train B can observe the original schedule by travelling on track 2: the assigned departure and arrival time pair is (7,11).
Now we consider the third train C. Then, to assign train C with the minimum weighted deviation without conflict, as

easily seen from Fig. 2, the departure and arrival time pair should be (10,17) on track 1, and (10,16) on track 2. If the weights
of both departure and arrival deviations of train C are 1, the weighted deviations on track 1 and 2 are 3(=10 � 10 + 17 � 14)
and 2(= 10 � 10 + 16 � 14), respectively. Hence train C is assigned to track 2.

A greedy approach for a scheduling problem is to compute a sequence of jobs incrementally based on a lookahead func-
tion, an estimation of the change in an objective value from an increment of jobs in the sequence. For instance, to solve a
single machine scheduling problem with earliness and tardiness costs, Ow and Morton (1989) and Valente and Alves



Fig. 2. An illustration of Step 3.
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(2005) used a lookahead function that estimates, in each iteration, not only an increase in the objective function but also the
tardiness of the remaining jobs due to a new job added to the current sequence. In our pricing problem as a scheduling prob-
lem, (16) serves as a lookahead function. This particular form was chosen from experiments. Notice that this function is a
weighted average of the departure and arrival times. Thus, whenever a train is rescheduled, the earliness is preferred to
the tardiness although they are penalized with the same weight in the objective function. This is probably because the ear-
liness may leave more room to the following trains to optimize their schedules.

To analyze the time complexity of this heuristic, suppose segment p has m tracks and n trains. It takes O(nlogn) time to
sort the trains in Step 1. Obviously, the heuristic terminates in n iterations. Since we investigate a constant number of sched-
ules to assign 3 trains over the m tracks, each iteration requires O(m) operations. Hence the total complexity of the pricing
subproblem heuristic is O(nlogn + nm) time.

As will be seen in the experiments, our main algorithm provides almost the same quality in the solution when it employs
this simple heuristic or an exact IP-based algorithm to solve the pricing subproblem.

5.3. Main algorithm

Our algorithm derives a feasible solution by rounding the fractional optimal solution k� of the LP-relaxation of (11)–(14).
More specifically, we fix a promising schedule of a segment p = (q,r) based on the fractional solution. (Recall that each var-
iable of (11)–(14) corresponds to a schedule of the trains relevant to a segment.) Then the procedure is repeated for the re-
duced problem after regenerating it, namely after adjusting the earliest departure time of train i at station r so that the
minimum dwelling time is met: bi

p0  max bi
p0 ; a

i
p þ si

r

n o
, where p0 is the segment the train i traverses right after p (hence

both p and p0 are incident to r). This fixing and regenerating steps are repeated for the segments in their topological order
so that the feasibility of the timetable is readily maintained. Our main algorithm can be stated as follows.

Algorithm 5.3. Fix-and-regenerate algorithm (FRA)
Step 1: Let (11)–(14) be the current problem. In a topological order of segments p in the subnetwork downstream to the
source segment of conflict, repeat Steps 2 and 3.

Step 2: Solve the LP-relaxation of the current problem by the column-generation method to obtain a fractional solution k�

(as discussed in Section 5.1).
Step 3: Let k�p;t0 be the largest among k�p;t from segment p. Then fix the corresponding timetable sp;t0 for segment p. Let the

regenerated problem be the current problem.
Step 4: (Postprocessing) As mentioned in Section 5.1, the dwelling mode of every train is initially set to ‘‘stop” at every sta-

tion. If the arrival and departure times of a train are the same at a station, then modify the dwelling mode of the train
as ‘‘pass” at the station. Accordingly, set the values of integer variables, namely, track assignments, dispatching
sequences of trains, and dwelling modes in the MIP-model (1)–(10). Solve the resulted LP to recompute the contin-
uous values, departure, arrival, and dwelling times.

We can illustrate the flow of algorithm as in Fig. 3.
In Step 2, we need to generate an initial feasible solution to construct RLPM in solving the LP-relaxation. As we perform a

heuristic instead of exact pricing, we get a suboptimal solution of the LP-relaxation, in general, depending on the initial solu-
tion. To enhance the optimality, we may use multiple initial solutions for the same LP-relaxation. We refer to such scheme as
a partial branching.

In the experiment, we used two initial solutions for partial branching. The first initial solution is obtained by fixing the
timetable by the pricing heuristic setting (p,l) = (0,0). This is repeated in a topological order of segments by regenerating the



Fig. 3. Flow diagram of the fix-and-regenerate algorithm.
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problem after fixing each timetable. The second initial solution is obtained from the first initial solution by exchanging the
departing orders of the most delayed train and its successor or predecessor, whoever departure time is the closest to the
departure time of the most delayed train from the first segment. The second solution is motivated by the observation that
the delay in the first segment has the most impact on the schedules of trains of the subsequent segments.

6. Experimental results

In this section, the fix-and-regenerate algorithm is tested on the real-world instances from the Seoul metropolitan rail-
way network. The performance is evaluated in comparison with two previous algorithms, by Törnquist and Persson (2007)
and Sahin (1999). We also compare the performance of the two versions of the fix-and-regenerate algorithm: one employing
the heuristic in Section 5.2 and the other one using an exact IP-based method for the pricing subproblem.

6.1. Instance description

The railway network consists of 23 stations and 22 segments. Among the segments, 5 are triple-tracked and 17 are dou-
ble-tracked in each direction as illustrated in Fig. 4. This network spans 75.4 km in the Seoul metropolitan area and the aver-
age traffic is 66 trains per hour in each direction of a segment.

There are three types of trains: passenger trains, subway trains, and freight trains. From a consultation with KORAIL, they
are assigned the costs of a unit deviation 1.5, 1.2, and 1.0, respectively. For all stations, the inter-track safe headway time is
fixed to be 0.5 min. But the intra-track safe headway time varies from 2.5 min to 6.0 min. Each train has a lower bound on its
transit time for each segment. But, the upper bound for transit time is not specified in the practice of KORAIL. Hence, it will
be set to infinity for every segment in our experiment.

Additional parameters in designing instances are summarized in Table 3. First, as each track is unidirectional, we consider
the instances consisting only of inbound trains to or outbound trains from Seoul. Inbound trains travel from Pyongtac or In-
cheon to Seoul, and outbound trains go in the opposite direction (Fig. 4). Second, we consider four times horizons: 30, 60, 90,
and 120 min. The running times of all trains in the Seoul metropolitan area are within 120 min. Also, the length of the time
horizon that the operator (in the control center) considers during conflict resolution is between 30 and 60 min. Thus KORAIL
asked us to use 120 min for exploiting the advantage of the automated resolution procedure. Third, each time horizon starts
at 8:00 AM, 9:00 AM, noon, 1:00 PM, 6:00 PM, or 7:00 PM according to a daily timetable. For example, an instance can con-
sist of the inbound trains whose original arrival and departure times at stations fall in the 120 min interval starting at
8:00 AM. We generate the sources of train-conflicts by delaying the transit time of a train over a segment by 5, 10, 15,
20, 25, 30, 35, and 40 min. For the 30 and 60 min horizon instances, however, the delays longer than 30 min are not used.



Fig. 4. Railway network of Seoul metropolitan.

Table 3
Instance parameters.

Directions Lengths of time horizon (min) Starting times of time horizon Delays (min)

Inbound 30, 60, 8 AM, 9 AM, noon, 5, 10, 15, 20,
Outbound 90, 120 1 PM, 6 PM, 7 PM 25, 30, 35, 40
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6.2. Comparison with Törnquist and persson’s algorithms

On the above instances, the performance of the fix-and-regenerate algorithm, or FRA, is compared to the ones of the pre-
vious methods proposed by Törnquist and Persson (2007). Their methods add the linear constraints restricting solutions to a
set of routing strategies to an MIP-formulation. Then they solve the resulted MIP by a commercial code. The model of Törn-
quist and Persson (2007) does not exactly match with ours as their model can consider the bidirectional tracks and the plat-
form assignments at stations but cannot consider the inter-track headway times and the dwelling mode of trains at stations.
Their idea, however, can be applied to our model since the routing strategies used in Törnquist and Persson (2007) are inde-
pendent of the particular differences of two models. Of the routing strategies from Törnquist and Persson (2007), we choose
the following two which have been reported to yield near-optimal solutions in very reasonable computation times on their
real instances.

6.2.1. Törnquist and Persson’s strategy II (TP2)
Strategy II only considers the timetables in which the trains assigned to the same track should observe the original dis-

patching sequence. For example, suppose train i departs segment p earlier than train j in the original timetable. If train i and j
use the same track of segment p in the new timetable, then train i must depart segment p earlier than train j. This strategy
can be expressed as the following constraints:
2� Zi
p;k � Zj

p;k þ Xij
p P 1; 8p 2 P; 8i; j 2 Ip; di

p < dj
p; k ¼ 1; . . . ;np:
6.2.2. Törnquist and Persson’s strategy III (TP3)
Strategy III is identical to the previous strategy except that the conflict-source (hence the initially delayed) train does not

have to observe the original dispatching sequence with directly subsequent h trains. Let i� denote the index of the
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conflict-source train, and Xp be a set of h trains that travel segment p immediately after i�. Then strategy III can be expressed
as the following constraints:
Table 4
Compar

Gap

0–10
10–2
20–3
30–4
40–5
Over
Feas
Avg.

0–10
10–2
20–3
30–4
40–5
Over
Feas
Avg.
2� Zi
p;k � Zj

p;k þ Xij
p P 1; 8p 2 P; i–i�; 8j 2 Ip; di

p < dj
p; k ¼ 1; . . . ;np;

2� Zi
p;k � Zj

p;k þ Xij
p P 1; 8p 2 P; i ¼ i�; 8j R Xp; di

p < dj
p; k ¼ 1; . . . ;np:
Törnquist (2007) developed an extended version of Strategy III by using the different set of Xp, a set of events for a con-
flict-source train and those that are immediately affected by the conflict-source train that travel segment p (see Definition
4.1 in Törnquist (2007)). However, in our instance, all tracks are unidirectional and all segments have multiple tracks. There-
fore, when a conflict occurs, a subsequent train may use a different track. The resulting delay immediately affected is not
significant. Hence we did not use the extended version. In the experiments, we set h to be 1 for a conservative evaluation
and {2,1} for a practical evaluation.

TP2 and TP3 coded in OPL studio 5.5 were executed on a desktop PC with an Intel Quad 2.50 GHz CPU and 4.0 GB RAM.
FRA coded in C using CPLEX 9.0 solver for the LP subroutines was executed on the same machine.

6.2.3. A conservative evaluation
For a conservative performance evaluation of FRA, we first compared its solutions to those obtained by running TP2 and

TP3 for 120 min. (FRA was run to its terminations.) We set h to be1 because the quality of TP3 improves as h increases. Table
4 reports the distribution of the relative errors (z � OPT)/OPT of the objective values z of the solutions provided by each of
FRA, TP2, and TP3 to an optimal value OPT, obtained by the CPLEX 9.0 solver applied to the MIP-formulation (1)–(10) in
120 min. Each row represents a relative error interval and each column represents the percentage of instances whose solu-
tions have relative errors falling into the interval. For example, the entry of the column ‘‘FRA” and the row ‘‘0–10%” of the
table for the 30 min horizon shows that FRA produces for 73.6% of the instances a solution whose relative error to the opti-
mal value is less than 10%. The row ‘‘Feasible Sol. N/A” shows the percentage of instances for which each method cannot find
a feasible solution in the time limit. In case the CPLEX solver could not find an optimal solution in 120 min, we used, instead,
the largest LP lower bound available. (Hence the relative gaps presented can be more conservative than the actual values for
all methods, FRA, TP2, and TP3.)

For all time horizons, FRA performs better in solution quality than TP2. On the other hand, for small time horizons (30 and
60 min), TP3 produces better solutions than FRA. But, FRA provides better solutions than TP3 for larger horizons (90 and
120 min). Furthermore, while FRA always returns a feasible solution, TP2 and TP3 cannot find a feasible solution for more
than 40% of the cases for larger time horizons. Therefore, in the conservative evaluation, FRA produces better solutions than
TP2 in every time horizon, while it is outperformed by TP3 in the small time horizons such as 30 and 60 min.

6.2.4. A practical evaluation
In practice, the running time of a conflict resolution algorithm is restricted to a certain range. We set the upper bound to

be a single minute after consulting with KORAIL.
As described in Section 5.3, FRA does not fully exploit the dwelling mode variables from (8)–(10). This strategy may result

in a sub-optimality of solution while it may save the computation time significantly. We also adopt an analogy of this strat-
egy for TP2 and TP3. In other words, we apply TP2 and TP3 to the MIP-formulation (1)–(10) in which the dwelling mode of
ison of FRA and the algorithm by Törnquist and Persson (2007).

Time horizon of 30 min Time horizon of 60 min

FRA TP2 TP3 FRA TP2 TP3

% 73.6% 45.8% 80.6% 41.7% 30.6% 51.4%
0% 9.7% 16.7% 9.7% 11.1% 12.5% 6.9%
0% 9.7% 8.3% 6.9% 12.5% 1.4% 11.1%
0% 2.8% 11.1% 1.4% 11.1% 0.0% 6.9%
0% 0.0% 9.7% 0.0% 4.2% 1.4% 1.4%
50% 4.2% 8.3% 1.4% 19.4% 52.8% 18.1%

ible Sol. N/A 0.0% 0.0% 0.0% 0.0% 1.4% 4.2%
time (s) 0.7 3451.1 1595.3 2.5 5929.1 6225.4

Time horizon of 90 min Time horizon of 120 min

% 37.5% 7.3% 20.8% 21.9% 3.1% 7.3%
0% 16.6% 5.2% 13.5% 29.2% 2.1% 4.2%
0% 9.4% 2.1% 0.0% 9.4% 3.1% 1.0%
0% 9.4% 4.2% 2.1% 10.4% 1.0% 1.0%
0% 7.3% 2.1% 4.2% 4.2% 0.0% 2.1%
50% 19.8% 33.3% 17.7% 25.0% 12.5% 10.4%

ible Sol. N/A 0.0% 45.8% 41.7% 0.0% 78.1% 74.0%
time (s) 5.9 7043.4 6565.4 14.8 7200.0 6985.2
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every train is fixed so that it stops at every station. Then, the returned solution is improved by the same postprocessing as in
FRA. We call these two modifications, TP20 and TP30, respectively.

Thus, in this practical evaluation, we compare FRA with TP20 and TP30 with a single minute computation time. In a pre-
liminary experiment, TP30 outperformed TP20 for most instances, and hence TP20 was excluded in the experiment. The com-
putation time of TP30 decreases if a small value of h is used. Thus, we also experimented the case of h = 2 along with h =1.

Table 5–8 show the experimental results on the instances consisting of outbound trains. Each ordered pair from the first
column represents the starting time of the horizon and the duration of the delay causing a train conflict. The second column
indicates the lower bound or optimum for each instance. Notice that the boldface objective value means it is at least as good
as the objective values returned by the other methods.

Table 5 shows the experimental results on the instances with the time horizon of 30 min. FRA returns a better objective
value for eight instances while TP30 obtained a better objective value for 17 instances (12 for h =1 and 5 for h = 2). However,
the average running time of FRA is 0.7 s while the average running time of TP30 is about 40 s. Thus, overall, FRA and TP30

show a trade-off between computation time and objective value on the instances with the 30 min time horizon.
Table 6 shows the experimental results on the instances with the time horizon of 60 min. TP30 could not find a feasible

solution for 23 instances with h =1 and only two instances with h = 2. However, FRA was able to find feasible solutions for
all instances and produced better solutions than those of TP30 except for four instances. The average running time of FRA is
2.3 s, whereas the average running time of TP30 is 55 s. Thus for the 60 min horizon instances, FRA outperformed TP30.
Table 5
Comparison of FRA and TP30 on the time horizon of 30 min.a

Instance LB or OPT FRA (1 min) TP30 � h (1 min)

Obj. Time (s) h =1 h = 2

Obj. Time (s) Obj. Time (s)

(08,05) 53.8 64.1 0.8 60.8 60.0 58.4 40.0
(08,10) 105.6 109.5 0.7 105.6 30.7 110.8 47.9

(08,15) 162.6 166.5 0.7 163.8 60.0 172.6 60.0

(08,20) 216.4 222.7 0.7 218.8 60.9 232.4 60.0
(08,25) 267.6 271.5 0.7 267.6 19.1 282.8 44.4

(08,30) 321.6 325.5 0.8 321.6 24.2 336.8 54.4

(09,05) 53.4 111.0 0.8 231.0 60.0 80.5 60.0
(09,10) 105.4 183.6 0.8 185.9 60.0 239.9 60.0
(09,15) 159.5 184.2 0.7 176.0 60.0 219.4 60.0
(09,20) 213.8 230.6 0.7 259.1 60.0 274.4 60.0
(09,25) 266.4 280.7 0.8 285.9 60.0 377.0 60.0
(09,30) 320.4 334.7 0.8 336.0 60.0 399.7 60.0
(12,05) 55.0 55.0 0.6 55.0 5.1 55.0 19.4

(12,10) 109.0 109.0 0.5 109.0 4.2 109.0 7.6

(12,15) 162.1 162.1 0.5 162.1 4.3 162.1 6.6

(12,20) 217.8 217.8 0.6 217.8 4.2 217.8 12.2

(12,25) 270.0 270.0 0.6 270.0 3.2 270.0 0.6

(12,30) 324.0 324.0 0.6 324.0 4.2 324.0 0.7

(13,05) 42.0 43.2 0.6 42.0 6.1 42.0 2.7

(13,10) 85.4 102.9 0.6 91.0 60.0 89.9 17.2
(13,15) 127.4 134.2 0.6 131.4 60.0 134.9 19.7
(13,20) 168.0 178.7 0.6 169.2 60.0 175.0 15.9
(13,25) 211.2 212.7 0.6 211.2 60.0 217.0 17.7

(13,30) 252.0 254.7 0.6 253.2 18.9 259.0 16.7
(18,05) 42.0 42.0 0.9 42.0 27.2 42.0 2.2

(18,10) 87.9 110.8 0.8 97.3 60.0 101.7 60.0
(18,15) 126.0 148.7 0.9 138.9 60.0 156.3 60.0
(18,20) 168.0 171.8 0.8 173.9 60.0 199.3 60.0
(18,25) 213.7 213.8 0.7 215.9 60.0 240.4 60.0
(18,30) 252.0 255.8 0.8 257.9 60.0 282.4 60.0
(19,05) 49.3 49.6 0.7 - 60.0 49.4 29.4
(19,10) 104.0 117.7 0.8 117.1 60.0 113.3 60.0
(19,15) 156.8 156.8 0.8 159.6 60.0 171.9 60.0

(19,20) 211.8 211.8 0.8 211.8 20.1 224.7 60.0

(19,25) 264.8 264.8 0.7 264.8 12.0 276.5 60.0
(19,30) 318.8 318.8 0.8 318.8 13.9 330.5 60.0

Average 0.7 40.5 39.9

-: Feasible solution N/A.
a Each timetable consists of outbound trains: 36 instances in total.



Table 6
Comparison of FRA and TP30 on the time horizon of 60 min.a

Instance LB or OPT FRA (1 min) TP30 � h (1 min)

Obj. Time (s) h =1 h = 2

Obj. Time (s) Obj. Time (s)

(08,05) 91.0 100.8 3.7 – 60.0 237.4 60.0
(08,10) 202.8 206.9 3.5 – 60.0 304.5 60.0
(08,15) 316.8 332.1 3.6 – 60.0 685.7 60.0
(08,20) 432.8 460.6 3.6 – 60.0 867.2 60.0
(08,25) 544.8 568.0 3.6 – 60.0 – 60.0
(08,30) 658.8 662.9 3.7 – 60.0 1126.8 60.0
(09,05) 76.2 210.7 3.8 – 60.0 418.0 60.0
(09,10) 179.8 378.8 3.7 – 60.0 732.8 60.0
(09,15) 280.0 336.8 3.7 – 60.0 805.6 60.0
(09,20) 382.4 432.1 3.6 – 60.0 967.6 60.0
(09,25) 483.6 504.8 3.5 – 60.0 912.5 60.0
(09,30) 588.6 631.4 3.5 – 60.0 1762.2 60.0
(12,05) 91.0 91.4 1.7 – 60.0 91.4 56.2
(12,10) 181.4 181.4 1.8 181.4 23.3 181.4 41.7

(12,15) 270.3 270.5 1.7 270.3 22.5 270.3 24.4

(12,20) 371.8 371.8 1.6 371.8 39.0 371.8 58.1

(12,25) 450.0 450.0 1.6 450.0 31.9 450.0 47.6

(12,30) 540.0 540.0 1.6 540.0 28.8 548.4 58.2

(13,05) 90.0 105.4 2.1 94.0 60.0 102.1 60.0

(13,10) 193.4 246.5 2.0 773.4 60.0 244.5 60.0
(13,15) 298.2 335.8 2.0 633.7 60.0 444.1 60.0
(13,20) 396.0 426.7 2.1 – 60.0 457.2 60.0
(13,25) 498.0 516.7 2.0 508.3 60.0 576.0 60.0
(13,30) 601.0 617.3 2.2 623.8 60.0 683.6 60.0
(18,05) 78.0 111.2 2.8 – 60.0 260.8 60.0
(18,10) 156.0 225.1 2.9 512.2 60.0 305.6 60.0
(18,15) 234.0 350.7 2.9 – 60.0 536.9 60.0
(18,20) 312.0 425.9 3.1 535.0 60.0 1461.5 60.0
(18,25) 391.6 495.5 2.9 675.5 60.0 656.1 60.0
(18,30) 468.0 577.9 3.0 – 60.0 1950.2 60.0
(19,05) 92.9 107.1 3.5 – 60.0 193.8 60.0
(19,10) 210.1 289.1 3.6 – 60.0 482.9 60.0
(19,15) 320.9 330.2 3.2 – 60.0 717.7 60.0
(19,20) 435.3 466.8 3.3 – 60.0 915.3 60.0
(19,25) 548.9 624.4 3.3 – 60.0 1270.0 60.0
(19,30) 662.9 668.6 3.2 – 60.0 – 60.0
Average 2.9 55.7 57.9

-: Feasible solution N/A.
a Each timetable consists of outbound trains: 36 instances in total.
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Tables 7 and 8 show the experimental results for the 90 and 120 min time horizons, respectively, in which we could per-
form experiments for more variety of source delays due to their longer horizon. The number of instances is 48 for each time
horizon. As we can see, the performance difference gets bigger for longer time horizons. With h =1, TP30 had a difficulty in
finding a feasible solution for these time horizons. With h = 2, it could obtain more feasible solutions than with h =1, but the
solution quality was inferior to that of FRA.

Table 9 recaptures this single-minute practical evaluation for all instances in the format of Table 4. In addition, in the row
‘‘Best”, we specified the ratio of the instances for which each algorithm returned a solution with a strictly lower objective
value than others. Also, the standard deviations of the computation times are presented. The results are, as expected, com-
patible to the ones from the previous tables. Even for the instances with the time horizon of 30 min, the relative errors of the
solutions provided by FRA and TP30 do not show a big difference.

Regarding the computation time, FRA terminated in less than 1 min for all time horizons. Especially, the computation
times not only had small variances but also did not increase too fast as the time horizon gets larger. This appears consistent
to the O(nlogn + mn) polynomial computation time of the pricing heuristic analyzed in Section 5.2.

Fig. 5 illustrates the difference between timetables obtained by TP30(h = 2) and FRA for the second instance in Table 6. (a)
of Fig. 5 is the time-distance graph that corresponds to a part of the original timetable. A train represented by the dashed line
is delayed by 10 min. This conflict is resolved by TP30 and FRA, and the resulting time-distance graphs are shown in (b) and
(c) of Fig. 5, respectively.

In sum, we may conclude that the fix-and-regenerate algorithm outperforms Törnquist and Persson’s algorithms in both
solution quality and computation time. Table 10 compares our instances with the time horizon of 60 min to the instances



Table 7
Comparison of FRA and TP30 on the time horizon of 90 min.a

Instance LB FRA(1 min) TP30 � h (1 min)

Obj. Time (s) h =1 h = 2

Obj. Time (s) Obj. Time (s)

(08,05) 103.2 115.6 12.3 – 60.0 – 60.0
(08,10) 241.2 246.2 11.9 – 60.0 – 60.0
(08,15) 379.2 448.8 12.0 – 60.0 – 60.0
(08,20) 517.2 613.7 11.6 – 60.0 – 60.0
(08,25) 655.2 723.0 12.0 – 60.0 – 60.0
(08,30) 793.2 797.7 11.7 – 60.0 – 60.0
(08,35) 931.2 935.3 10.4 – 60.0 – 60.0
(08,40) 1057.8 1151.8 10.6 – 60.0 – 60.0
(09,05) 90.8 276.5 6.9 – 60.0 – 60.0
(09,10) 230.1 541.8 7.0 – 60.0 – 60.0
(09,15) 366.6 460.2 6.8 – 60.0 4788.7 60.0
(09,20) 504.6 563.8 6.8 – 60.0 – 60.0
(09,25) 642.6 681.7 6.8 – 60.0 – 60.0
(09,30) 783.6 835.7 6.8 – 60.0 – 60.0
(09,35) 918.6 975.1 6.8 – 60.0 – 60.0
(09,40) 1057.8 1124.2 7.1 – 60.0 – 60.0
(12,05) 115.0 119.0 3.6 – 60.0 151.3 60.0
(12,10) 229.4 233.0 3.6 329.7 60.0 274.3 60.0
(12,15) 342.0 346.1 3.5 – 60.0 406.1 60.0
(12,20) 471.6 489.3 3.5 630.0 60.0 526.8 60.0
(12,25) 570.0 609.1 3.5 – 60.0 1206.8 60.0
(12,30) 684.0 687.6 3.6 – 60.0 864.8 60.0
(12,35) 798.0 812.3 3.3 869.4 60.0 981.6 60.0
(12,40) 912.0 915.6 3.2 1047.6 60.0 1107.5 60.0
(13,05) 147.6 207.9 3.8 – 60.0 394.5 60.0
(13,10) 325.3 443.6 3.9 – 60.0 579.1 60.0
(13,15) 506.5 547.9 3.8 – 60.0 710.7 60.0
(13,20) 669.6 732.2 4.1 – 60.0 774.8 60.0
(13,25) 843.6 904.5 3.8 – 60.0 – 60.0
(13,30) 1017.6 1110.6 3.8 – 60.0 1285.4 60.0
(13,35) 1192.1 1295.9 3.8 – 60.0 – 60.0
(13,40) 1371.9 1616.3 3.6 – 60.0 2126.6 60.0
(18,05) 114.0 151.3 8.1 – 60.0 4600.4 60.0
(18,10) 228.0 312.7 8.2 – 60.0 – 60.0
(18,15) 342.0 438.3 8.5 – 60.0 – 60.0
(18,20) 457.6 556.7 8.4 – 60.0 – 60.0
(18,25) 570.0 641.8 8.8 – 60.0 – 60.0
(18,30) 684.0 748.3 8.7 – 60.0 – 60.0
(18,35) 798.0 927.2 7.6 – 60.0 – 60.0
(18,40) 912.0 975.0 7.2 – 60.0 – 60.0
(19,05) 112.5 141.5 7.3 – 60.0 2901.0 60.0
(19,10) 251.5 380.5 7.4 – 60.0 – 60.0
(19,15) 386.5 431.0 8.1 – 60.0 – 60.0
(19,20) 527.9 775.0 7.1 – 60.0 – 60.0
(19,25) 662.5 1026.0 8.3 – 60.0 – 60.0
(19,30) 800.5 844.8 7.0 – 60.0 – 60.0
(19,35) 938.5 985.5 6.0 – 60.0 – 60.0
(19,40) 1076.5 1171.4 6.2 – 60.0 – 60.0
Average 6.9 60.0 60.0

-: Feasible solution N/A.
a Each timetable consists of outbound trains: 48 instances in total.
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with the same horizon on which TP3 was tested in Törnquist (2007). Each ordered pair from the second column represents
the direction of segment(O: outbound, I: inbound) and the starting time of the horizon.

The instances in Törnquist (2007) have more segments but less trains than ours. The total number of events, namely the
total number of trains over segments is larger in the instances in Törnquist (2007) than in ours. The encoding length of an
instance is proportional to the total number of events. In this sense, the instances from Törnquist (2007) is larger than ours.

However, according to Törnquist (2007), the computation times of TP3 applied to the instances of Törnquist (2007) are all
less than 10 s, while the practical version of TP3, namely TP30, could not find even a feasible solution in 60 s for most of our
instances with 90 and 120 min time horizons. From our experiments, the most critical factor in the intractability of an in-
stance seems to be the number of binary variables in the MIP-formulation. (This is plausible in the sense that an IP commer-
cial code is an enumerative method.) The number of binary variables is



Table 8
Comparison of FRA and TP30 on the time horizon of 120 min.a

Instance LB FRA (1 min) TP30 � h (1 min)

Obj. Time (s) h =1 h = 2

Obj. Time (s) Obj. Time (s)

(08,05) 103.2 120.1 31.8 – 60.0 – 60.0
(08,10) 241.2 252.8 32.4 – 60.0 – 60.0
(08,15) 379.2 498.0 32.8 – 60.0 – 60.0
(08,20) 517.2 638.5 31.7 – 60.0 – 60.0
(08,25) 655.2 757.3 31.1 – 60.0 – 60.0
(08,30) 793.2 802.2 32.2 – 60.0 – 60.0
(08,35) 931.2 940.0 24.9 – 60.0 – 60.0
(08,40) 1069.2 1196.0 25.1 – 60.0 – 60.0
(09,05) 90.6 286.6 15.6 – 60.0 – 60.0
(09,10) 230.6 544.6 19.2 – 60.0 – 60.0
(09,15) 366.6 463.0 19.3 – 60.0 – 60.0
(09,20) 504.6 566.6 16.5 – 60.0 – 60.0
(09,25) 642.6 684.5 16.5 – 60.0 – 60.0
(09,30) 780.6 840.9 16.6 – 60.0 – 60.0
(09,35) 918.6 996.9 12.7 – 60.0 – 60.0
(09,40) 1056.6 1221.8 12.6 – 60.0 – 60.0
(12,05) 114.0 117.9 9.3 – 60.0 2629.8 60.0
(12,10) 228.0 232.0 10.0 – 60.0 1862.4 60.0
(12,15) 342.0 345.0 9.6 – 60.0 425.7 60.0
(12,20) 456.0 488.3 9.2 – 60.0 – 60.0
(12,25) 570.0 608.1 9.3 – 60.0 2883.3 60.0
(12,30) 684.0 686.5 9.4 – 60.0 2754.1 60.0
(12,35) 798.0 814.7 7.8 – 60.0 2896.1 60.0
(12,40) 912.0 914.5 7.6 – 60.0 – 60.0
(13,05) 156.6 216.0 8.7 – 60.0 653.9 60.0
(13,10) 345.1 475.8 9.3 – 60.0 2403.3 60.0
(13,15) 530.6 584.0 8.5 – 60.0 830.0 60.0
(13,20) 714.6 785.3 8.3 – 60.0 – 60.0
(13,25) 900.6 1007.0 8.3 – 60.0 – 60.0
(13,30) 1086.6 1221.4 8.2 – 60.0 3999.7 60.0
(13,35) 1272.6 1424.9 6.9 – 60.0 – 60.0
(13,40) 1458.6 1844.2 6.9 – 60.0 – 60.0
(18,05) 114.0 154.7 8.8 – 60.0 – 60.0
(18,10) 228.0 340.2 8.9 – 60.0 – 60.0
(18,15) 342.0 436.7 9.0 – 60.0 – 60.0
(18,20) 456.0 571.8 9.1 – 60.0 – 60.0
(18,25) 570.0 652.8 9.0 – 60.0 – 60.0
(18,30) 684.0 762.1 9.1 – 60.0 – 60.0
(18,35) 798.0 1002.6 8.9 – 60.0 – 60.0
(18,40) 912.0 986.1 9.0 – 60.0 – 60.0
(19,05) 110.5 154.8 18.1 – 60.0 – 60.0
(19,10) 248.5 399.4 18.1 – 60.0 – 60.0
(19,15) 386.5 443.0 17.5 – 60.0 – 60.0
(19,20) 524.5 930.3 19.3 – 60.0 – 60.0
(19,25) 662.5 1152.2 18.3 – 60.0 – 60.0
(19,30) 800.5 911.9 18.2 – 60.0 – 60.0
(19,35) 938.5 1053.3 15.3 – 60.0 – 60.0
(19,40) 1069.2 1213.5 15.1 – 60.0 – 60.0
Average 15.0 60.0 60.0

-: Feasible solution N/A.
a Each timetable consists of outbound trains: 48 instances in total.
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X
p2P

jIpj � np þ jIpjðjIpj � 1Þ:
In the table, we reported the average number of binary variables of an instance from Törnquist (2007) and ours, that are 2154
and 6401, respectively. (From our instances, we excluded the number of binary variables representing the dwelling modes of
trains at stations.)

6.3. Comparison with Sahin’s algorithm

While FRA or the algorithms of Törnquist and Persson are based on an MIP-formulation, some heuristic methods aim at
obtaining minimal computation by adopting a pragmatic algorithm design principle. Sahin’s algorithm (Sahin, 1999) is such



Table 9
FRA and TP30 with regard to ratios to optimal objective values.

Gap Time horizon of 30 min Time horizon of 60 min

FRA TP30 � h (1 min) FRA TP30 � h (1 min)

h =1 h = 2 h =1 h = 2

0–10% 73.6% 72.2% 68.1% 41.7% 30.6% 19.4%
10–20% 9.7% 12.5% 11.1% 11.1% 4.2% 8.3%
20–30% 9.7% 8.3% 11.1% 12.5% 5.6% 2.8%
30–40% 2.8% 1.4% 4.2% 11.1% 1.4% 4.2%
40–50% 0.0% 0.0% 1.4% 4.2% 1.4% 4.2%
Over 50% 4.2% 4.2% 4.2% 19.4% 25.0% 58.3%
Feasible Sol. N/A 0.0% 1.4% 0.0% 0.0% 31.9% 2.8%
Best 58.3% 80.6% 47.2% 79.2% 26.4% 15.3%
Avg. time (s) 0.7 31.4 28.8 2.5 55.7 56.5
Std. dev. (s) 0.1 24.1 21.7 0.8 10.6 11.6

Time horizon of 90 min Time horizon of 120 min

0–10% 37.5% 1.0% 1.0% 21.9% 0.0% 0.0%
10–20% 16.6% 1.0% 4.2% 29.2% 0.0% 0.0%
20–30% 9.4% 3.1% 5.2% 9.4% 0.0% 1.0%
30–40% 9.4% 4.2% 3.1% 10.4% 0.0% 0.0%
40–50% 7.3% 6.3% 5.2% 4.2% 0.0% 0.0%
Over 50% 19.8% 28.1% 29.2% 25.0% 0.0% 11.5%
Feasible Sol. N/A 0.0% 56.3% 52.1% 0.0% 100.0% 87.5%
Best 97.9% 1.0% 1.0% 100.0% 0.0% 0.0%
Avg. time (s) 5.9 60.0 59.7 13.6 60.0 60.0
Std. dev. (s) 2.4 0.0 3.1 6.6 0.0 0.0

Fig. 5. A time–distance graph.
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heuristic and uses a train-conflict resolution model that is the closest to ours. In this subsection, we perform a comparison
test of FRA and Sahin’s algorithm. The model in Sahin (1999) uses the same objective function as ours, but assumes only sin-
gle-track segments between stations. Also, it allows a bidirectional track, but does not consider the platform assignment or
the dwelling modes of a train at a station.

In the main step for sequencing trains on a segment, Sahin’s algorithm uses a lookahead function for sequencing trains.
More specifically, the algorithm constructs a conflict resolving timetable as follows. The input of the algorithm is the time-
table obtained by updating the departure or arrival time of the train of the source delay in the original timetable. Then we
look up the earliest conflict in the timetable and the two trains, say i and j, involved in the conflict. Suppose that the conflict
occurs at segment p. Here, the algorithm considers only the option of shifting the schedule of train i or j (but, not both). Let Di

(Dj) be the minimum amount of time by which the schedule of train i (j, respectively) at segment p should be shifted to re-
solve the single conflict on the single segment p. The algorithm considers two timetables obtained by shifting the train i by Di

and train j by Dj, respectively, from the original timetable. Then, it computes, for each timetable, a lookahead function de-
fined by a weighted sum of the following factors:

(1) the weight of train i,
(2) Di,



Table 10
Instance description for the time horizon of 60 min in ours and Törnquist (2007).

No. Instance Trains Segments Events Frequencya Binary variables Continuous variables

1 (O,08) 74 22 367 16.7 8387 1101
2 (O,09) 71 22 376 17.1 8515 1128
3 (O,12) 57 22 281 12.8 4502 843
4 (O,13) 60 22 310 14.1 5529 930
5 (O,18) 74 22 370 16.8 7843 1110
6 (O,19) 73 22 369 16.8 7820 1107
7 (I,08) 66 22 299 13.6 5667 897
8 (I,09) 65 22 315 14.3 5468 945
9 (I,12) 55 22 273 12.4 4275 819
10 (I,13) 55 22 298 13.5 5111 894
11 (I,18) 75 22 361 16.4 7719 1083
12 (I,19) 69 22 313 14.2 5977 939
Average in ours 66.2 22.0 327.7 14.9 6401.1 983.1
Average in Törnquist (2007)b 34.4 105.7 349.1 3.3 2153.7 1047.3

a Frequency = # of events/# of segments.
b Average of 40 instances for the time horizon of 60 min in Table 3 of Törnquist (2007).
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(3) (Original arrival time of train i on the last segment � new departure time of train i on the segment p)/(the sum of the
minimum transit times of train i from the segment p to the last segment), and

(4) the number of remaining conflicts in the new timetable.

Since Sahin’s lookahead function is different from ours we chose a combination of weights that gives the best results from
a preliminary experiment. Between two timetables, the algorithm chooses the one with the smaller value of the lookahead
function. Then the procedure is repeated by looking up the earliest conflict in the new timetable until we get a conflict-free
timetable.

In the adaption of the Sahin’s algorithm for our multiple track instances, we assume that each train observes the track
assignment of the original timetable. Also to guarantee a feasible timetable, we also considered the inter-track safe headway
time. As in TP30, the dwelling modes of trains are fixed to be ‘‘stop” at each station. After the application of Sahin’s algorithm,
the solution is improved by the postprocessing.

The comparison test of FRA and the Sahin’s algorithm on 60 min time horizon instances are summarized in Table 11. The
computational efforts of FRA are marginal to the ones of the Sahin’s algorithm: 2.9 versus 1.9 s in average. As expected, how-
ever, FRA could provide better solution than the heuristic method. Their objective values are in different orders. Thus, FRA
offers a better trade-off between solution quality and computation time.

6.4. Performance of pricing heuristic

To evaluate the pricing subproblem heuristic, over the 72 instances of the time horizon of 30 min, we tested two versions
of FRA: the one solving the pricing subproblem exactly by the CPLEX solver and the other by the heuristic. Except for a single
Table 11
Comparison with Sahin’s algorithm on 60 min time horizon instance.

Instance FRA(1 min) SAHIN Instance FRA(1 min) SAHIN

Obj. Time (s) Obj. Time (s) Obj. Time (s) Obj. Time (s)

(08,05) 100.8 3.7 2870.6 2.6 (13,05) 105.4 2.1 133.2 1.3
(08,10) 206.9 3.5 1789.9 2.4 (13,10) 246.5 2.0 1398.5 1.3
(08,15) 332.1 3.6 2770.8 2.2 (13,15) 335.8 2.0 2173.1 1.3
(08,20) 460.6 3.6 2834.8 2.2 (13,20) 426.7 2.1 2602.6 1.3
(08,25) 568.0 3.6 2738.1 2.2 (13,25) 516.7 2.0 2603.2 1.3
(08,30) 662.9 3.7 2888.7 2.2 (13,30) 617.3 2.2 2099.9 1.3
(09,05) 210.7 3.8 2968.2 2.6 (18,05) 111.2 2.8 969.0 2.6
(09,10) 378.8 3.7 3483.0 2.2 (18,10) 225.1 2.9 3158.9 2.1
(09,15) 336.8 3.7 3363.1 2.2 (18,15) 350.7 2.9 1290.7 2.1
(09,20) 432.1 3.6 4018.3 2.1 (18,20) 425.9 3.1 2864.9 2.1
(09,25) 504.8 3.5 3258.0 2.1 (18,25) 495.5 2.9 2889.1 2.1
(09,30) 631.4 3.5 3457.8 2.1 (18,30) 577.9 3.0 2644.0 2.1
(12,05) 91.4 1.7 586.8 1.7 (19,05) 107.1 3.5 793.2 2.5
(12,10) 181.4 1.8 661.6 1.1 (19,10) 289.1 3.6 1046.7 2.1
(12,15) 270.5 1.7 827.6 1.1 (19,15) 330.2 3.2 2096.2 2.1
(12,20) 371.8 1.6 1389.6 1.1 (19,20) 466.8 3.3 1698.1 2.1
(12,25) 450.0 1.6 1688.7 1.1 (19,25) 624.4 3.3 2883.6 2.1
(12,30) 540.0 1.6 1524.2 1.1 (19,30) 668.6 3.2 2435.2 2.1

Average 2.9 1.9
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instance for which the exact pricing resulted in a solution better by 0.1%, two versions returned the solutions of the same
quality. However, the computation time of the exact pricing FRA was 100 times larger than that of the heuristic pricing FRA.

6.5. Platform capacity consideration

Finally, as our model does not explicitly consider the platform capacity, we examined the number of platforms required
by the timetable provided by our algorithm. We could observe that at each station, the number of platforms required by the
timetable of FRA does not exceed one plus the number of tracks on the incident segment. In this sense, FRA seems to provide
a feasible solution when there are more platforms at a station than the number of outgoing tracks on the segment as in the
case of the stations of the Seoul metropolitan railway network.

7. Conclusion and open question

In this paper, we have considered the train-conflict resolution problem for which the optimal conflict-free timetable
should be provided in a few minute for the practical purposes. First of all, we have formulated this problem as an MIP.
The feature of our model is the intra-track safe headway time: any pair of consecutive trains should not be too close even
if they use different tracks of a segment. Second, we have established the intractability of the problem by showing that the
instance with two single-tracked segments and three stations is NP-hard. Hence, it may be the best alternative to consider a
method considering a trade-off between solution quality and computation time.

In this sense, we have proposed a method called FRA, exploiting the structure of the problem. From the observations on
the Seoul metropolitan railway network case, we have made several assumptions that each station has enough number of
platforms, the underlying railway network is tree, and each track is unidirectional. Theses assumptions imply that our prob-
lem is separable. Moreover, we can obtain a feasible (global) timetable by fixing a train schedule for a single segment iter-
atively in a topological order of segments.

Based on these observations, FRA is designed as an economic variant of the column-generation method. For this, we also
have devised an efficient heuristic for the pricing subproblem. Tested on the real instances from a metropolitan railway net-
work with a high train frequency, it could provide near-optimal conflict-free timetables within uniformly minimal compu-
tation times that appear practically feasible. In particular, it could provide a timetable within 1 minute, a requirement of the
Seoul metropolitan railway network. Moreover, we have showed that our method is superior to other methods in the
literature.

But our model does not consider the option of cancelling a train. Also, FRA relies on the above assumptions restricted to
the cases similar to Seoul metropolitan railway. Thus, FRA cannot be used if those assumptions are violated.

We conjecture that the special case with one single-tracked segment and two stations is also NP-hard. Especially, the bet-
ter understanding we get about this special case, the more efficient method may be possible for our pricing subproblem.
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