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a b s t r a c t

We consider a problem of minimizing the number of batches of a fixed capacity processing
the orders of various sizes on a finite set of items. This batch consolidation problem is
motivated by the production system typical in raw material industries in which multiple
items can be processed in the same batch if they share sufficiently close production
parameters. If the number of items processed in a batch is restricted to being up to some
fixed integer k, the problem is referred to as the k-batch consolidation problem. We will
show that the k-batch consolidation problem admits an approximation whose factor is
twice that of the k-set cover problem. In particular, this implies an upper bound on the
approximation factor, 2Hk − 1, where Hk = 1+ 1

2 + · · · +
1
k .

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider a production system where the orders r(v) ∈ Q+ on a finite set of items v ∈ V are processed in batches.
Each batch has a fixed capacity 1: the total order of items processed in a single batch cannot exceed 1. We are given a set,
E ⊆ V × V , of pairs of compatible items (u, v). Any set of items S ⊆ V can be processed in the same batch if and only if
they are compatible pairwise; in other words, S induces a clique on the compatibility graph G = (V , E). Then naturally we
can consider a problem of finding a minimum number of batches that can process the complete set of orders {r(v) : v ∈ V }.
This problem will be referred to as the batch consolidation problem or generalized batch consolidation problem for emphasis.
If there is an additional constraint that each batch cannot process more than k items for some constant k ∈ Z+, we call
the problem the k-batch consolidation problem, which models the situation where proliferation of items in a single batch is
prohibitive for a logistic reason.
Consider an integral version of the batch consolidation problem: given integer-valued orders r(v) ∈ Z+ and batch

capacity λ ∈ Z+, the orders of items processed in the batches are required to be integer-valued. But, in [1], it has been
observed that, when k = 2, given an optimal solution when allowed to process non-integral orders, one can construct the
solution processing integral orders without increasing the number of utilized batches. Therefore it is an optimal solution of
the integral version of the problem. It is not hard to show that such an observation extends to a general k. Thus, our definition
of the batch consolidation problem using a unit batch capacity is general enough to cover the integral version.
The batch consolidation problem, first proposed by Lee et al. [7], was motivated by a production system typical for raw

material industries such as steel, chemical and semiconductor ones. The process of a particular batch is characterized by
a finite set of production parameters. Hence multiple items can be processed in the same batch if their parameters are
sufficiently close. Naturally, the production efficiency depends on howwell the batches are consolidated so that the number
of utilized batches is minimized.
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Fig. 1. The hypergraph determined by the batches B1 , B2 and B3 .

It is not hard to see that the batch consolidation problem includes the clique partition problem [7,1], which implies that
it does not admit an approximation within a factor of |V |ε for some ε > 0 [9]. But, as we will see, the k-batch consolidation
problem is approximablewithin 2Hk−1 times the optimum,whereHk = 1+ 12+· · ·+

1
k . The idea is to decompose the orders

of items so that a minimum cardinality set cover problemwhose elements of the ground set correspond to the decomposed
orders provides a well-consolidated set of batches. Note that this algorithm provides a 2-approximation when k = 2. Chang
et al. [1] develop a 32 -approximation algorithm, for k = 2, based on a more elaborate scheme for the decomposition of
orders of items. However, as also will be discussed later, once k becomes≥ 3 such a scheme does not help in improving the
approximation factor to strictly better than the one provided by the algorithm proposed in this paper.
The batch consolidation problem is related to bin packing with conflicts, or BPC [6,4]. Although a bin packing problem is

fundamentally different from the batch consolidation problemas an item cannot be split over bins, BPC bears some similarity
with the batch consolidationproblem in that it specifies the pairs of items that cannot be packed in the samebin. [1] discusses
some relations between the batch consolidation problem and BPC.
Another related model is packing splittable items with cardinality constraints, or PSIC [5]. PSIC is a generalization of bin

packing: the items can be split over bins but a bin cannot contain more than k items. Notice, then, that PSIC [5] is the special
case of the k-batch consolidation problem in which the compatibility graph G is complete. In this special case, the problem
admits a polynomial time approximation scheme while, in general, the problem is max-SNP-hard and not approximable
within 1.0021 times the optimum as discussed later.
This paper is organized as follows. Section 2 discusses a simple but useful property of an optimal solution helpful in

the analysis of the approximation algorithm. In Section 3, we establish an inapproximability of the k-batch consolidation
problem. Section 4 is devoted to the discussion of an approximation algorithm.

2. Preliminaries

Given a solution of the problem, consider the hypergraphH = (V ,B)whose vertices and edges, respectively, correspond
to the items V and the collection of batches B ∈ B processing items with their nonzero orders. (See Fig. 1.)
Proposition 2.1. Any solution of the k-batch consolidation problem can be modified efficiently without increasing the number of
utilized batches so that its hypergraphH is acyclic: there is no sequence (v1, B1, v2, B2, . . ., vl Bl, v1) with l ≥ 2 such that Bi are
all distinct, vi are all distinct, and vi, vi+1 ∈ Bi for i = 1, 2, . . . , l− 1, and vl, v1 ∈ Bl. (We refer to such sequence as a circuit of
a hypergraph.)
Proof. Suppose H has a circuit C := (v1, B1, v2, B2, . . ., vl Bl, v1). For each vi, i = 1, 2, . . . , l, from C , write, as ρ−i and ρ

+

i ,
respectively, the orders of vi processed by Bi−1 and Bi batches where B0 denotes Bl. Reverse the direction and/or redesignate
the initial vertex of circuit so that minvi∈C {ρ

−

i , ρ
+

i } = ρ
+

1 . Then themodified solution ρ
+

i −ρ
+

1 , ρ
−

i +ρ
+

1 , ∀vi ∈ C is feasible
with the same number of batches. And the circuit is disconnected since v1 is deleted from B1. Repeating this procedure, we
can convert any solution to having an acyclic hypergraph. �

Proposition 2.2. Any problem (G, r) can be reduced in polynomial time into one, (G, s), with s(v) < deg(v)+ 1,∀v ∈ V .
Proof. From Proposition 2.1, there is an optimal solution which has at most deg(v) batches processing the order of v ∈ V
with other items. In other words, when r(v) ≥ deg(v)+1, we can first construct br(v)−deg(v)c batches processing exactly
1 out of the order r(v)without compromising the optimality. Then the orders are reduced to s(v) = r(v)−br(v)−deg(v)c <
deg(v)+ 1. �

3. Inapproximability

We can derive an easy inapproximability of the k-batch consolidation problem from the inapproximability of the 2-batch
consolidationproblembyChang et al. [1]. In the reduction from the vertex cover problemwith boundeddegree to an instance
of the 2-batch consolidation problem, they construct the compatibility graphG as bipartite. A k-batch consolidation problem
on a bipartite G is simply a 2-batch consolidation problem and hence the reduction is also valid for the k-batch consolidation
problem.
Theorem 3.1. The k-batch consolidation problem cannot be approximated within 1.0021 times the optimum for all k ≥ 2 unless
P = NP.
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Proof. Chang et al. [1] prove that if a vertex cover problem with δ-bounded degree cannot be approximated within ρ, then
the k-batch consolidation problem cannot be approximated within 1 + ρ−1

2δ+1 . And Chlebik and Chlebikova [3] show that
the vertex cover problem with 4-bounded degree cannot be approximated within 5352 . Therefore the k-batch consolidation
problem cannot be approximated within 1.0021. �

4. Approximation

4.1. Set-cover-based algorithm

For a problem (G, r) defined by G = (V , E) and r ∈ QV
+
, the approximation algorithm is conveniently described by

defining an auxiliary problem (U, S)where U and S are constructed as follows. For each v ∈ V , compute nv := dkr(v)e and
accordingly construct a decomposition of r(v): a set of nv elements, Dv = {v0, v1, v2, . . . , vnv−1} and their orders r

′(v0) =

r(v)− nv−1k , r
′(v1)= r ′(v2)=· · · = r ′(vnv−1)=

1
k . LetU =

⋃
v∈V Dv andS = {S ⊆ U|

∑
u∈S r

′(u) ≤ 1, |S| ≤ k, S is a clique}.
The following (U, S) is an auxiliary problem of instance G = (V , E) in Fig. 1 for k = 2.

U ={v0, w0, w1, w2, x0, y0}
S ={{v0}, {w0}, {w1}, {w2}, {x0}, {y0}

{v0, w0}, {v0, w1}, {v0, w2}
{w0, w1}, {w0, w2}, {w0, x0}, {w0, y0}
{w1, w2}, {w1, x0}, {w1, y0}
{w2, x0}, {w2, y0}, {x0, y0}}.

In the above, |U| =
∑

v∈V dkr(v)e≤
∑

v∈V d|V |r(v)e<
∑

v∈V (1+|V |r(v)) ≤ |V |+|V |
∑

v∈V r(v). But, due to Proposition 2.2,
we have r(v) < 1 + deg(v), ∀v ∈ V , which implies |U| < |V | + |V |

∑
v∈V (1 + deg(v)) = |V | + |V |

2
+ 2|V ||E|. As

|S| ≤
∑k
j=1 |U|

j, the construction can be performed in polynomial time for a fixed k.
Consider the following algorithm of the k-batch consolidation problem.

Algorithm 4.1.

Step 1 Construct the auxiliary problem (U, S) of (G, r).
Step 2 Compute a minimum set cover C ⊆ S of U .
Step 3 For each subset C of C, construct a batch processing the assigned orders, r ′(u),∀u ∈ C . Return the batches as a

solution.

From the construction of (U, S), the batches from Step 3 can cover the complete set of orders. Also notice that we can adjust
the processing orders without increasing the number of batches so that each order r ′(u) is exactly covered. As the orders r ′
of the auxiliary problem are a decomposition of the original orders r , the batches from Step 3 are clearly a feasible solution
of the original problem.
Let us define some more notation. Denote by OPT (G, r) and z(G, r), respectively, the numbers of batches of an optimal

solution and a solution returned by Algorithm 4.1. And c(X) is the cardinality of a minimum set cover from S of X ⊂ U .
Then, for the analysis of Algorithm 4.1, the following lemmas are useful.

Lemma 4.2. For any partition (X; Y ) of U, z(G, r) = c(U) ≤ c(X)+ c(Y ).
Proof. Let C1 and C2, respectively, be the minimum set covers of X and Y . Then, C1 ∪ C2 is a set cover of U . Therefore,

z(G, r) = c(U) ≤ |C1| + |C2| = c(X)+ c(Y ). �

Lemma 4.3. If r ≤ s, OPT (G, r) ≤ OPT (G, s) and z(G, r) ≤ z(G, s).
Proof. The first half of the statement is trivial.
For the secondhalf, define r such that r(w) = s(w)−δ, with 0 < δ ≤ 1

k for any fixedw ∈ V and r(v) = s(v),∀v ∈ V\{w}.
Let (Ur , Sr) and (Us, Ss), respectively, be the auxiliary problems for (G, r) and (G, s). Also let Dw = {w0, w1, . . . , wl} be a
set forw in the decomposition of s(w) from (G, s).
If s′(w0) > δ in the decomposition of s(w), then Ur = Us and hence Sr ⊇ Ss. Therefore a set cover of (Us, Ss) is also a set

cover of (Ur , Sr) and we have z(G, r) ≤ z(G, s).
If, on the other hand, s′(w0) ≤ δ, then we get Dw = {w0, w1, . . . , wl−1} for w in the decomposition of r(w) from (G, r).

Let Cs be any set cover of Us. Delete w0 from the subset of Cs. And replace wl with w0. Then the resulting collection is a
set cover of Ur whose cardinality is no greater than |Cs|. (See Fig. 2.) Therefore we have z(G, r) ≤ z(G, s). Repeating this
procedure we can prove z(G, r) ≤ z(G, s) for any case of r ≤ s. �

Theorem 4.4. z(G, r) ≤ 2OPT (G, r).
Proof. By induction on OPT (G, r). Suppose OPT (G, r) = 1. Then G is a complete graph with |V | ≤ k and

∑
v∈V r(v) ≤ 1.

This implies that both S1 = {u ∈ U|r ′(u) < 1
k } and S2 = {u ∈ U|r

′(u) = 1
k } are elements of S. But, {S1, S2} is a set cover of

U and we have z(G, r) ≤ 2 = 2OPT (G, r).
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Fig. 2.Modifying a set cover of Us to that of Ur .

Fig. 3. The case r(v) is split over two batches.

Assume that the theorem holds for any problem whose optimal batch number is less than n and consider any problem
(G, r) with OPT (G, r) = n. Let S(G, r) be a corresponding optimal solution. From Proposition 2.1, the hypergraph H
determined by S(G, r) can be assumed to be acyclic. Therefore there is a batch B which has at most one item v ∈ V whose
order r(v) is split over more than one batch.
Suppose B has no such split item. Then define X :=

⋃
w∈B Dw and Y := U \ X . Let s and t be the vectors obtained by

restricting r to X and Y , respectively. Then we get OPT (G, s) = 1 and OPT (G, t) = n− 1. From Lemma 4.2 and the induction
hypothesis, we have

z(G, r) ≤ c(X)+ c(Y ) ≤ 2+ 2(OPT (G, r)− 1) = 2OPT (G, r).

Now suppose B has such a split item v ∈ B (see Fig. 3). And B processes the order rB(v) := l
k + δ from r(v) for some

l ∈ Z+ and 0 ≤ δ < 1
k . Let Dv = {v0, v1, v2, . . . , vnv } be a set for v in the decomposition of r(v). Note that nv ≥ l + 1 if

δ > r ′(v0). Define

A :=

{
{v1, . . . , vl}, if δ = 0,
{v0, v1, . . . , vl}, if r ′(v0) ≥ δ > 0,
{v1, . . . , vl+1}, if δ > r ′(v0),

and X :=
⋃
w∈(B\v) Dw ∪ A and Y := U \ X . Then notice that 0 ≤

∑
u∈A r

′(u) − rB(v) < 1
k and therefore we have∑

u∈X r
′(u) < 1 + 1

k . This implies that there are at most k elements u of X such that r
′(u) = 1

k . Also |B| ≤ k implies
that no more than k elements u of X have r ′(u) < 1

k . Thus, if we set S1 := {v ∈ X |r
′(v) = 1

k }, and S2 := {v ∈ X |r
′(v) < 1

k },
then S1, S2 ∈ S and {S1, S2} is a set cover of X and we have c(X) ≤ 2.
Let s and t be the vectors obtained by subtracting from r the orders corresponding to the elements of X and B, respectively.

Then, s ≤ t and hence from Lemma 4.3, OPT (G, s) ≤ OPT (G, t) = OPT (G, r) − 1 and z(G, s) ≤ z(G, t). But, then from the
induction hypothesis, c(Y ) = z(G, s) ≤ z(G, t) ≤ 2(OPT (G, r)− 1). Finally, from Lemma 4.2, we have

z(G, r) ≤ c(X)+ c(Y ) ≤ 2+ 2(OPT (G, r)− 1) = 2OPT (G, r). �

A tight example of Theorem 4.4. Consider a complete graph Q = (W , A)with |W | = k and an order vector s ∈ Qk
+
where

s(v1) = 1
k − ε(k− 1), and s(v) =

1
k + ε, ∀v ∈ W \ {v1}. Then, OPT (Q , s) = 1 and z(Q , s) = 2.

Construct a graph G by connecting l such Q ’s via a path consisting of v1 of each Q . The order r ∈ Qkl
+
of G is simply the

direct sum of l identical order vectors s ∈ Qk
+
. Then, as easily checked, OPT (G, r) = l and z(G, r) = 2l. Hence the analysis of

Theorem 4.4 is tight.
Step 2 of Algorithm 4.1, however, cannot be performed in polynomial time as the k-set cover problem is NP-hard. We

can, however, rely on an approximation algorithm of the k-set cover problem. For instance, the approximation algorithm of
[2] guarantees the approximation factor of (Hk− 12 ), whereHk = 1+

1
2 +· · ·+

1
k . Thus, employing the approximate solution
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instead of an exact one, Algorithm 4.1 is an (2Hk − 1)-approximation. For k ≥ 4, we can use the (Hk − 196
390 )-approximation

algorithm of [8] instead to get a slightly improved (2Hk − 196
195 )-approximation for the k-batch consolidation problem.

4.2. An alternative decomposition scheme

When k = 2, Algorithm4.1 employing an (Hk− 12 )-approximation of the k-set cover problemprovides a 2-approximation
as the corresponding 2-set cover problem is nothing but than the polynomially solvableminimum edge-cover problem. But,
the specialized 2-batch problem algorithm of [1] guarantees the approximation factor, 32 . The algorithm is based on the same
idea of solving the edge-cover problem on the auxiliary problem obtained by decomposition of the orders of vertices. But,
it uses a slightly different decomposition: each vertex v of order r(v) is decomposed into 2 × br(v)c vertices all assigned
the order 12 , and one vertex of the order r(v) − br(v)c in the auxiliary problem. The remaining steps are exactly the same
as Algorithm 4.1 for k = 2. Thus there is one (and at most one) auxiliary vertex per original one, whose order can be greater
than 12 . As shown in [1], when the number of items processed in a single batch is restricted to a number as small as k = 2,
such vertices are crucial in attaining the approximation guarantee of 32 .
Interestingly enough,when k ≥ 3, however, such a decomposition scheme does not help in improving the approximation

guarantee to strictly better than 2. To see this, consider the complete graph G = (V , E)with |V | = 2l− 1 and r(v) = 1
2 + ε,

∀v ∈ V . Then, for each v ∈ V , we get r ′(v0) = 1
2 + ε and therefore v0 participates only in a singleton set in the auxiliary

problem. Thus z(G, r) = 2l− 1 while the optimal value of the k-batch problem is OPT (G, r) = d(2l− 1)( 12 + ε)e = l for all
k ≥ 3. Thus the approximation factor is 2− 1

l .

5. Further research

There is currently a significant gap between the upper bound (2Hk − 1) and the lower bound 1.0021 on the
approximability of the k-batch consolidation problem. It is an interesting open problem whether the lower bound can be
tightened to log k, asymptotically the same as the upper bound, or vice versa.
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