
Approximability of the k -Server Disconnection Problem

Sung-Pil Hong
Department of Industrial Engineering, Seoul National University, Seoul, Korea

Byung-Cheon Choi
Semiconductor Business, Samsung Electronics Co. Ltd., Gyeonggi-Do, Korea

Consider a network of k servers and their users. Each
server provides a unique service that has a certain util-
ity for each user. Now comes an attacker who wishes to
destroy a set of network edges to maximize his net gain,
namely the total disconnected utilities of the users minus
the total edge-destruction cost. This k -server discon-
nection problem is NP-hard and, furthermore, cannot be
approximated within a polynomially computable factor of
the optimum when k is part of the input. Even for any fixed
k ≥ 2, there is a constant ε > 0 such that approximation
of the problem within a factor 1/(1 + ε) of the optimum
is NP-hard. However, a

(1
2 + 1

2k+1−2

)
-approximation can

be created in the time of O(2k) applications of a min-cut
algorithm. The main idea is to approximate the optimum
with special solutions computable in polynomial time
due to supermodularity. Therefore, when the the network
has, as is usual in most cases, only a few servers, a
0.5-approximation can be carried out in polynomial time.
© 2007 Wiley Periodicals, Inc. NETWORKS, Vol. 50(4), 273–282
2007

Keywords: server–network disconnection; inapproximability;
approximation algorithm; fixed-parameter cases

1. INTRODUCTION

Consider a network of k servers and their users. Each
server provides its own unique service. For instance, the first
and second servers can be, respectively, the mail- and web-
server of an intranet. In our model, each server is also allowed
to be the user of services other than its own. Each service
offers a certain utility to each user. Now, we consider an
attacker who wants to destroy a set of network edges with an
objective that optimally trades off the disconnected utilities
of users and the edge-destruction cost.

Received April 2006; accepted March 2007
Correspondence to: B. C. Choi; e-mail: cbc@optimn.anu.ac.kr
Contract grant sponsor: KOSEF; Contract grant number: R01-2005-000-
10271-0
DOI 10.1002/net.20203
Published online in Wiley InterScience (www.interscience.wiley.
com).
© 2007 Wiley Periodicals, Inc.

Such a model, to the authors’ best knowledge, was first
proposed by Cunningham [3], who considered a directed
network with a single “headquarters” and the importance,
expressed in a certain weight, of each node being reachable
from the headquarters. Then the problem is to find a set of
edges whose removal maximizes the ratio of the total weight
of nodes disconnected from the headquarters to the edge-
destruction cost. Therefore, one is concerned only with the
one-way communication ability of the headquarters to send
messages to the nodes. Also, Martel et al. [9] considered
the single-server problem of maximizing the total discon-
nected utilities under an edge-destruction budget constraint,
which has application in a distributive data storage system.
The problem is then shown to be NP-hard by a reduction
from the maximum clique problem. Martel et al. also pro-
posed an exact method based on enumeration of “maximal
cuts” and the cut-cost submodularity. Among the cut prob-
lems with a budget constraint studied by Engelberg et al. [5],
both the weighted and unweighted version of the budgeted
separating multiway cut problem (BSMC), can be consid-
ered as special cases of the multiserver extension of the
model of Martel et al. [9]. They showed that the weighted
BSMC is at least as difficult to approximate as the sparsest
cut problem, but is approximable within a constant factor
on trees. Hong and Choi [7], alternatively, in an undirected
extension of the single-server model proposed by Cunning-
ham [3], considered the problem of maximizing the ratio
of the total disconnected utilities of users to the incurred
edge-destruction cost.

In this paper, we consider the problem of maximizing the
attacker’s net gain, namely, the total disconnected utilities of
users minus the edge-destruction cost. (Hence, we assume
that the utilities and the edge-destruction cost can be con-
verted to a common unit.) We first show that the problem
is NP-hard and does not admit any approximation: for any
polynomially computable number α(n), 1

α(n)
-approximation

is impossible unless P = NP. The well-known multiway
cut problem with (k + 1)-terminals, as we will show, is eas-
ily reduced to the k-server disconnection problem. Hence,
the k-server disconnection problem is NP-hard even for

NETWORKS—2007—DOI 10.1002/net

k = 2. Furthermore, the polynomial reduction, combined
with the inapproximability results for the multiway cut prob-
lem, enables us to show that for any fixed k ≥ 2 there is some
constant ε > 0, such that an approximation of the problem
within a factor 1/(1+ε) of the optimum is impossible unless
P = NP.

The second half of this paper treats the approximability of
the problem with a fixed k. First we observe that a feasible
solution of the problem determines a node partition N = N0∪
N1∪· · ·∪Np−1, with p distinct sets for p = 1, 2, . . . , k+1, or a
p-partition (where p is determined by an optimality structure
discussed later in Section 3). Accordingly then, the optimum
will be the maximum of the values z∗

p , p = 1, 2, . . . , k +
1, where z∗

p denotes the optimum among the p-partitions.
However, the larger the p value becomes, the more difficult it
is to compute z∗

p : computing z∗
3 is already NP-hard. The main

idea of the approximation algorithm is to approximate z∗
ps of

large ps with z∗
2, which is polynomially computable due to its

supermodularity. More specifically, we first show that z∗
2 can

be computed within the time of O(2k) applications of a min-
cut algorithm (which is polynomial for a fixed k). Then we
prove that z∗

2 ≥ (1
2 + 1

2k+1−2

)
z∗

p , for every p = 3, 4, . . . , k +1,
and z∗

2. This implies that when the network has, as is usual in
most cases, only a few servers, a 0.5-approximation can be
performed efficiently.

The rest of this section is devoted to a formal definition
of the problem. In Section 2, we study how the k-server dis-
connection problem is related to other models of network
node partitioning. By doing so, we establish inapproximabil-
ity results for the problem. Also, we discuss some polynomial
cases that will be used to develop the approximation algo-
rithm in Section 3. Finally, Section 4 offers concluding
remarks and future research.

1.1. Problem Formulation

Problem 1.1 (The k-server disconnection problem). Con-
sider a connected undirected graph G = (N , E) with the node
set N = {1, 2, . . . , n}. Each edge e ∈ E will be denoted by its
end points i < j: e = (i, j).

We assume that the server set K = {s1, . . . , sk} ⊆ N . For
notational convenience, we also assume that s1 = 1, . . . , sk =
k. The service of sl offers utility dl

i to each user i ∈ N .

Therefore, the utility of user i can be expressed as the
k-dimensional vector

di = [
d1

i , . . . , dk
i

]T ∈ Z
k+.

Each server sl ∈ K is also the user of services other than
its own, and hence the utility vector is also well defined for
the server node sl. (In this case, it is natural to assume dl

l =
0, but it is inessential to the discussion of this paper.) The
nonnegative edge-destruction cost will be denoted by ce ∈
Z+, e ∈ E. If an edge set F ⊆ E is removed from G, some
users will be disconnected from their servers. Then the k-
server disconnection problem is to find F that maximizes
the total disconnected utilities dscn(F) minus the total edge-
destruction cost c(F): maxF{dscn(F) − c(F)}. In Figure 1a,
a 2-server problem and its solution are illustrated. The utility
vector di is attached to each node i. For instance, the first
(second) server offers a utility of 2 (8, respectively) units to
the user 3 and hence d3 = [2, 8]T .

If F = {(3, 5), (s2, 4)}, then its removal creates a parti-
tion of N : N0 = {4, 5}, N1 = {s1, 3}, N2 = {s2}. Then we
have dscn(F) = 36. As c(F) = 9, the objective value is 27.
We will assume, unless stated otherwise, that G is complete.
Notice that we can do so without loss of generality by intro-
ducing a zero edge-destruction cost for nonadjacent nodes
(Fig. 1b). Clearly, an optimal solution of the original graph is
also optimal for the complete graph and vice versa. This com-
pleteness assumption simplifies the discussion. For instance,
for any node partition N = N0 ∪ N1 ∪ · · · ∪ Np−1, each set
Nl, l = 0, 1, . . . , p − 1, induces a connected subgraph.

1.2. Polynomiality of the Single-Server Case

If there is a single server, say node 1, the problem is to find
a cut (N1; N \N1) (with 1 ∈ N1) that maximizes the objective∑

i∈N\N1
d1

i − ∑
e∈(N1;N\N1)

ce. It is easy to confirm that the

first term δ(N1) ≡ ∑
i∈N\N1

d1
i is a modular function: δ(A)+

δ(B) = δ(A∩B)+δ(A∪B) for all A, B ⊆ N . However, the cut
cost γ (N1) ≡ ∑

e∈(N1;N\N1)
ce is a well-known submodular

function: γ (A)+γ (B) ≥ γ (A∩B)+γ (A∪B) for all A, B ⊆ N .
Hence the objective function is a supermodular function of
N1, and the problem, as a supermodular maximization, is
solvable in (strongly) polynomial time (see e.g. [11]). As
seen later, the single-server problem can be formulated as a
min-cut problem.

FIG. 1. (a) A 2-server disconnection problem and a solution whose value is 27. (b) Equivalent problem on a
complete graph.

274 NETWORKS—2007—DOI 10.1002/net

1.3. An Integer Programming Formulation

The k-server disconnection problem can be formulated as
an integer program:

max
∑
l∈K

∑
i∈N

dl
i y

l
i −

∑
e∈E

cexe (1)

s.t.
∑
e∈P

xe ≥ yl
i , ∀ P ∈ Pl(i), ∀i ∈ N , ∀ l ∈ K , (2)

xe ∈ {0, 1}, ∀ e ∈ E, (3)

yl
i ∈ {0, 1}, ∀i ∈ N , ∀l ∈ K , (4)

where Pl(i) is the set of l−i paths. Here yl
i is a binary variable

indicating whether node i is disconnected from server l. If
so, that is, if yl

i = 1, every l − i path has at least one edge
e destroyed (xe = 1), which is enforced by (2). This integer
program will be used to show that the k-server disconnection
problem is polynomially reducible to the multicut problem.

2. RELATED PROBLEMS AND
INAPPROXIMABILITY

Problem 2.1 (k-server-net vulnerability problem). The k-
server-net vulnerability problem is a ratio version of the
k-server disconnection problem: we want to find a set F ⊆ E
that, if removed, maximizes the ratio of the total disconnected
utility to the total edge-destruction cost: maxF⊆E

{ dscn(F)
c(F)

}
.

Notice that the optimal value, the maximum disconnected
utility per unit cost, is a natural measure of the vulnerabil-
ity of a multiserver network. For arbitrary k, the problem
was proven NP-hard by a reduction from the sparsest cut
problem [7].

Now, we show that any approximation algorithm for the k-
server disconnection problem would yield a polynomial algo-
rithm for the k-server-net vulnerability problem. Consider the
binary search query to solve the k-server-net vulnerability
problem. For λ ∈ [1

|E|cmax
, kndmax

]
, is maxF

{ dscn(F)
c(F)

}
> λ?

Here, cmax (dmax) is the maximum value of an edge cost
(a service utility, respectively). By standard arguments, it is
not difficult to see that using log(k|E|ncmaxdmax) queries,
we can find the optimum of the k-server-net vulnerability
problem. The answer to the query is “yes” if and only if
maxF{dscn(F) − λc(F)} > 0. The latter problem is yes if
and only if the k-server disconnection problem with edge
costs λce has a nontrivial solution F 	= ∅ whose value
is positive. Thus, if we have an approximation algorithm
with any polynomially computable factor, it can be used to
answer the query correctly and hence to solve the k-server-net
vulnerability in polynomial time.

Theorem 2.2. For arbitrary k, the k-server disconnec-
tion problem is not approximable within any polynomially
computable factor within the optimum.

Problem 2.3 (Minimum k-terminal (or Multiway) cut prob-
lem). Given an undirected graph G = (N , E) with nonneg-
ative edge costs and a set of k specified nodes or terminals,
{t1, t2, . . . , tk}, find a minimum cost set of edges F ⊆ E such
that the removal of F from G disconnects each terminal from
all of the others.

The minimum k-terminal cut problem is Max-SNP-hard
for k ≥ 3 [4]. Chopra and Rao [2] proposed an integer
programming formulation and studied the associated poly-
hedron. Calinescu et al. [1] developed an algorithm with
the approximation factor of

(3
2 − 1

k

)
. Karger et al. [8] also

proposed an 1.3438-approximation algorithm, which is an
improvement for large ks.

Proposition 2.4. The minimum 3-terminal cut problem
(M3C) is polynomially reducible to the 2-server disconnec-
tion problem.

Proof. On the same graph G = (N , E), designate the
first two terminals t1 and t2 of M3C as the two servers, and
designate t3 as a nonserver node in an instance of the 2-server
disconnection problem. Assign utility vectors to the nodes as
follows: set dt1 ≡ [

dt1
t1

, dt2
t1

]T = [0, M]T , dt2 ≡ [
dt1

t2
, dt2

t2

]T =
[M, 0]T , and dt3 ≡ [

dt1
t3

, dt2
t3

]T = [M, M]T . The remaining
nodes are assigned the zero utility vector [0, 0]T . If M is
sufficiently large, for instance, larger than zM3C, the optimal
value of M3C, then clearly we are better off by separating
all of the nodes, t1, t2, and t3, in the 2-server disconnection
problem. Then an optimal solution of the 2-server instance
is a min-cost edge set separating all three terminals. Hence,
the 2-server disconnection problem instance is equivalent to
the 3-terminal problem. Therefore, we can choose any M
that has both polynomial encoding length and is greater than
zM3C, such as the sum of all edge costs plus 1, for a valid
reduction, and this completes the proof.

However, we will show that setting M exactly to zM3C is
sufficient for the reduction to be valid, which will be used
in the proof of Lemma 2.5. More specifically, we will show
that when M = zM3C, there is an optimal solution of the 2-
server disconnection problem that separates all three nodes
t1, t2, and t3, and we can guarantee such an output with an
additional but polynomial time computation.

Let FM3C and F∗, respectively, be any optimal solution of
M3C and the corresponding 2-server disconnection problem.
First, notice that F∗ separates t1 and t2; for, otherwise, adding
the edges of FM3C to F∗ will increase the objective value of
the 2-server disconnection problem by at least zM3C, which
contradicts the optimality of F∗.

We can assume further that F∗ disconnects t3 from both
t1 and t2. Suppose, on the contrary, that t3 is connected to,
say, t2. Then we introduce the additional step of computing
the minimum t3 − t2 cut in the connected component contain-
ing t2 and t3 of the subgraph G\F∗. Since E(G\F∗)∩FM3C

contains a t3 − t2 cut of the component with cost no greater
than zM3C, the minimum t3 − t2 cut value should be no greater

NETWORKS—2007—DOI 10.1002/net 275

than zM3C (where E(G\F∗) denotes the edges of the subgraph
G \ F∗). Thus, the net change in the objective value of the
2-server disconnection problem, due to the addition of the
edges of the minimum t3 − t2 cut to F∗, cannot be negative.
Therefore, we can guarantee that, with an extra but polyno-
mial time computation, all three nodes will be disconnected
from each other in the optimal solution of the corresponding
2-server problem, and hence the reduction is also valid when
M = zM3C. ■

Thereby we have established the NP-hardness of the
k-server disconnection problem for any fixed k ≥ 2. How-
ever, by combining it with the approximability results on the
k-terminal cut problem, we can obtain stronger results:

Lemma 2.5. If there exists an α-approximation of the
2-server disconnection problem, there also exists a 14−11α

3 -
approximation of the 3-terminal cut problem M3C.

Proof. We first reduce the given instance of M3C to a
2-server disconnection problem, as in the proof of Propo-
sition 2.4. In particular, we set M = wH , where wH is
the objective value obtained from applying the

(3
2 − 1

k

)
-

approximation of Calinescu et al. [1] to the given instance
of M3C. Then zM3C ≤ wH ≤ 7

6 zM3C (where zM3C is the
optimal value of M3C).

Subsequently, we apply the α-approximation to the
2-server disconnection problem. Since M = wH ≥ zM3C

according to the arguments of the latter half of the proof
of Proposition 2.4, by performing extra but polynomial time
computation, if necessary, we can guarantee that all three
nodes t1, t2, and t3 will be separated without decreasing the
objective value of the α-approximate solution. Therefore, we
may assume that the α-approximate solution of the 2-server
disconnection problem is also feasible for M3C.

Let zα and z∗, respectively, be the objective values of
the α-approximate solution and an optimal solution of the
2-server disconnection problem. Also by wα we denote the
edge-destruction cost of the α-approximate solution. Notice
that wα is then the objective value of the α-approximate solu-
tion as a feasible solution of M3C. From the correspondence
between the solutions of the two problems, we have

z∗ = 4M − zM3C = 4wH − zM3C and

zα = 4M − wα = 4wH − wα ,

and hence, from the assumption of α-approximability, we
obtain

zα

z∗ = 4wH − wα

4wH − zM3C
≥ α. (5)

Combining (5) with wH ≤ 7
6 zM3C, we obtain wα ≤ 4(1 −

α)wH + αzM3C ≤ 14−11α
3 zM3C. ■

Lemma 2.5 implies if α approaches 1, so also does
the approximation factor of wα . However, since M3C is

Max-SNP-hard, the approximation factor α of the 2-server
disconnection problem cannot be arbitrarily close to 1. Also,
it is not difficult to see that if the (k + 1)-server dis-
connection problem has an α-approximation, so does the
k-server disconnection problem. Therefore, we have estab-
lished the following inapproximability result for the k-server
disconnection problem.

Theorem 2.6. For any fixed k ≥ 2, there is some constant
ε > 0 such that approximation of the k-server disconnection
problem within a factor 1/(1+ε) of the optimum is impossible
unless P = NP.

Another model related to the k-server disconnection
problem is the multicut problem.

Problem 2.7 (Multicut problem). Given an undirected
graph G = (N , E) with nonnegative edge costs and a set
S(⊆ N × N) of k pairs of nodes, {(s1, t1), . . . , (sk , tk)}, find a
minimum cost set of edges F ⊆ E such that the removal of F
from G disconnects si from ti for all i = 1, 2, . . . , k.

The multicut problem is a generalization of the minimum
k-terminal cut problem. For instance, given a 3-terminal cut
problem, we can construct an equivalent multicut instance
preserving the objective value simply by constructing all of
the

(3
2

)
pairs of terminals. Hence, the multicut problem is also

Max-SNP-hard for k ≥ 3. Currently, O(log k)-approximation
is available [6].

Using a similar idea, the multicut problem with k pairs
is also polynomially reducible to the k′-server disconnection
problem with k′ ≤ k. Consider, for simplicity, the case k = 3.
Assume, without loss of generality, that the si are all distinct.
On the same topology and edge costs, designate s1, s2, and
s3, in order, as the three servers in the 3-server disconnec-
tion problem instance. The zero utility vectors are assigned
to every node other than t1, t2, and t3 whose utility vectors
are, respectively, [M, 0, 0]T , [0, M, 0]T , and [0, 0, M]T . If M
is sufficiently large, all of the three pairs are necessarily sep-
arated at optimality. However, this reduction seems useless
with respect to approximation.

Perhaps more interestingly, the converse is also true. The
k-server disconnection problem is polynomially reducible to
the multicut problem. To see this, we consider the integer
programming formulation (1)–(4) of the k-server discon-
nection problem in Section 1. If we replace the y-variables
with zl

i = 1 − yl
i , change the objective into minimization

form by multiplying by −1, and remove the constant term∑
l∈K

∑
i∈N dl

i :

max
∑
l∈K

∑
i∈N

dl
i y

l
i −

∑
e∈E

cexe

⇔ max
∑
l∈K

∑
i∈N

dl
i −

∑
l∈K

∑
i∈N

dl
i z

l
i −

∑
e∈E

cexe

⇔ min
∑
l∈K

∑
i∈N

dl
i z

l
i +

∑
e∈E

cexe,

276 NETWORKS—2007—DOI 10.1002/net

FIG. 2. (a) Extended path interpretation of (7) for k = 2. (b) Reduction to multicut applied to the example in
Figure 1.

then we get the following integer program:

min
∑
l∈K

∑
i∈N

dl
i z

l
i +

∑
e∈E

cexe (6)

s.t.
∑
e∈P

xe + zl
i ≥ 1, ∀ P ∈ Pl(i),

∀ i ∈ N , ∀ l ∈ K , (7)

xe ∈ {0, 1}, ∀ e ∈ E, (8)

zl
i ∈ {0, 1}, ∀i ∈ N , ∀l ∈ K , (9)

The constraint (7) has an interesting interpretation. It requires
that for every path in Pl(i), either at least one edge of the
path is removed or zl

i is 1. Thus, if we extend each path in
Pl(i) to a new node tl

i by adding an edge (i, tl
i) of cost dl

i , the
constraint (7) is equivalent to requiring that every l−tl

i path is
disconnected (Fig. 2.) There is a one-to-one correspondence
between the l − i paths and the i − tl

i paths. Therefore, by
adding an edge (i, tl

i) for all i ∈ N and l ∈ K , the problem
becomes the multicut problem with the pairs {(l, tl

i) : l ∈
K , i ∈ N}.

Proposition 2.8. The k-server disconnection problem is
polynomially reducible to a multicut problem with the pairs
between k distinct s-nodes and 2kn distinct t-nodes.

In the earlier transformation, one might consider merg-
ing all tl

i with the same l into a single node, say tl, to obtain
a multicut problem with k pairs {(s1, t1), . . . , (sk , tk)}. That
would reduce the 2-server disconnection problem to a muti-
cut problem with two pairs. However, we can easily construct
an example in which a feasible solution of the k-server dis-
connection problem maps to an infeasible solution of the
multicut problem in the case that the t-nodes are merged.
(Fig. 3a). The thick solid lines are the original edges with
the positive destruction cost of the 2-server disconnection
instance from Figure 1. (As we assigned zero utility vec-
tors to the two servers, the added edges to the servers have
zero cost and are omitted from the illustration for simplicity.)
If we choose F = {(s2, 4), (3, 5)}, then nodes 4 and 5 are
disconnected from server s1 and every node is disconnected
from server s2. (Note that as node 3 remains connected after
deletion of F, the augmented edge (3, t1

3) is disconnected, in
the augmented graph, for the multicut problem defined by

FIG. 3. (a) The removed edges in the multicut problem corresponding to the 2-server solution F = {(s2, 4), (3, 5)}.
(b) The multicut solution becomes infeasible if the tl

i are merged into tl .

NETWORKS—2007—DOI 10.1002/net 277

FIG. 4. (a) Edges
{
(3, 5), (3, t1

3), (5, t2
5), (4, t2

4)
}

of the multicut problem corresponding to the s1 − s2 cut
({s1, 3}; {s2, 4, 5}) in the graph from Figure 1a. (b) Corresponding edges {(3, 5), (3, s2), (5, s1), (4, s1)} of the
equivalent min-cut problem.

(6)–(9).) However, if the tl
i are merged into a single node tl

for l = 1, 2, then s1 and 5 are connected to each other as
in Figure 3b. Thus, the O(kn) t-nodes are essential in the
transformation.

However, there are some special cases in which a sim-
plification is possible. First, if k = 1, it is easy to see that
merging t-nodes into a single node maintains the validity of
the transformation. Then the problem becomes the multicut
problem with a single pair, which is, in turn, the well-known
min-cut problem. Hence, we recapture the polynomiality of
the single-server case.

Corollary 2.9. The single-server disconnection problem is
polynomially solvable via a min-cut problem.

Another case is the 2-server disconnection problem which
has an optimal solution inducing a cut (N1; N\N1) separating
two servers: s1 ∈ N1 and s2 ∈ N\N1. There are several ways
to prove the polynomiality of this case. First, similar to the
arguments for the single-server case in Section 1, we can iden-
tify the modularity of the disconnected utility dscn(F) with
respect to the cuts separating the two servers. Second, we can
show that the special case of the 2-server disconnection prob-
lem can be formulated as an unconstrained 0 − 1 quadratic
maximization with a nonnegative off-diagonal matrix which
is known to be polynomially solvable [10]. In this paper, we
establish the polynomiality by showing that the special condi-
tion reduces the multicut formulation of the problem further
to a min-cut problem.

Corollary 2.10. Suppose that there is an optimal solution
of the 2-server disconnection problem that induces a cut
(N1; N\N1) with s1 ∈ N1 and s2 ∈ N\N1. Then the problem
is polynomially solvable via the min-cut problem.

Proof. Given such a 2-server disconnection problem,
construct a min-cut problem as follows. In the graph of
the 2-server disconnection problem (with all of the utility

vectors removed), connect every node i to s2 (instead of
creating a new node t1

i as in the proof of Proposition 2.8)
by an edge with cost d1

i . Similarly, connect every node i
to s1 by an edge with cost d2

i . For instance, if we apply
the procedure to the original graph G of the 2-server dis-
connection problem from Figure 1a, we obtain a min-cut
problem G′ as shown in Figure 4b. The graph Ḡ in Figure 4a,
on the other hand, illustrates the multicut reformulation
based on the integer programming formulation (6)–(9) and
Proposition 2.8.

Therefore, to prove the corollary, it suffices to show that
there is an objective value preserving the one-to-one corre-
spondence between the multicuts in Ḡ induced by the 2-server
disconnection problem solutions disconnecting s1 from s2,
and the s1 − s2 cuts of G′. To do so, consider an s1 − s2 cut
(N1; N \ N1) and the cut edges F of G. The corresponding
edges of Ḡ are the edges from F and the edges (i, tl

i) for all
is and ls such that i remains connected to sl after the dele-
tion of F due to (7). For example, in Figure 4a, the edges
of the s1 − s2 cut ({s1, 3}; {s2, 4, 5}) of G determined by the
solution F = {(3, 5)} correspond to the multicut edges (3, 5),
(3, t1

3), (4, t2
4), (5, t2

5), which are marked “×”. We will show
that these precisely correspond to the edges of the s1 − s2

cut (N1; N \ N1) of G′. But this is clear from the construc-
tion of the min-cut problem. If node i is on the same side as
s1, (i, t1

i) should be a multicut edge. Through the construc-
tion, an edge (i, t1

i) of the multicut problem is replaced by
(i, s2) in the min-cut problem. Since i ∈ N1, (i, s2) is in the
s1 −s2 cut (N1; N \N1) of G′. For instance, in Figure 4, (3, t1

3)

corresponds to (3, s2). Similarly, if node i is on the s2-side,
the multicut edge (i, t2

i) corresponds to the edge (i, s1) of the
s1−s2 cut (N1; N\N1) of G′. For instance, (4, t2

4) corresponds
to (4, s1) in Figure 4. Clearly, this correspondence preserves
the objective value, as the corresponding edges have the same
cost.

In light of the “extended path interpretation” of (7), the
proof of the converse correspondence is almost identical and
hence will be omitted here. ■

278 NETWORKS—2007—DOI 10.1002/net

3. APPROXIMATION OF K -SERVER
DISCONNECTION PROBLEM FOR FIXED K

In this section, we show that for a fixed k, the k-server
disconnection problem is approximable within a factor of(1

2 + 1
2k+1−2

)
of the optimum.

Given a solution to the k-server disconnection problem,
we denote by Nl the set of nodes connected to server l ∈ K .
Then, it is easy to see that for any l 	= l′, the two sets Nl and
Nl′ are either identical or mutually exclusive: Nl = Nl′ if l
and l′ are connected; Nl ∩ Nl′ = ∅, otherwise. Hence, if we
denote by N0 the set of nodes disconnected from all of the
servers, the family N = {N0, N1, . . . , Nk} is a partition of N .
If Nl1 , Nl2 , . . . , Nlp are all of the distinct sets of N we will
also write

N ≡ (Nl1 ; Nl2 ; . . . ; Nlp) ≡ (Nlq : q = 1, 2, . . . , p),

and N will be referred to as a p set partition solution, or sim-
ply, a p-partition. Also its objective value will be denoted
by z(N). If F is the set of edges determining N = (N0;
N1; . . . ; Nk), then the objective value is written as

z(N) =
∑
l∈K

∑
i∈Nl

(
di(K) − dl

i

) +
∑
i∈N0

di(K) −
∑
e∈F

ce, (10)

where, for each i ∈ N and Q ⊆ K , di(Q) = ∑
l∈Q dl

i . For
p = 1, 2, . . . , k + 1, we denote by N ∗

p and z∗
p , respectively,

an optimal solution over the p-partitions and its objective
value. Then, obviously, the optimum value z∗ of the problem
is given by

z∗ = max
{
z∗

p : p = 1, 2, . . . , k + 1
}
. (11)

(Trivially, z∗
1 = 0.)

The rest of this section is organized as follows. In
Section 3.1, we prove that for a fixed k, z∗

2 can be com-
puted polynomially using O(2k) applications of the min-cut
problem. Then, in Section 3.2, using counting arguments, we
establish the inequality

z∗
2 ≥

(
1

2
+ 1

2k+1 − 2

)
z∗

p , for p = 3, 4, . . . , k + 1. (12)

Thus, combining (11) and (12), we obtain the following
theorem:

Theorem 3.1. For any fixed k, the k-server disconnection
problem is approximable within a factor

(1
2 + 1

2k+1−2

)
of the

optimum using O(2k) applications of a min-cut algorithm.

Notice that if z∗
2 ≤ 0, (12) implies that z∗

p ≤ 0 for
p = 2, 3, . . . , k + 1 and hence the trivial solution F = ∅
corresponding to z∗

1 = 0 is optimal. Conversely, if z∗ > 0,
again from (11) and (12) we have z∗

2 > 0. Thus, the k-server
disconnection problem has a positive optimal value if and
only if z∗

2 > 0.

3.1. Polynomiality of z∗
2 for Fixed k

To demonstrate the polynomiality of z∗
2 for a fixed k,

consider the following problem.

Problem 3.2. Given Q ⊆ K, compute an optimal 2-
partition, namely, a partition N = (M; N\M) with Q ⊆ M
and Qc ⊆ N\M that maximizes z(M; N \ M).

First, notice that Problem 3.2 can be reduced to the 2-
server disconnection problem. Merge all the servers of Q into
a single server, say, sQ, and those of Qc into sQc . If parallel
edges occur, replace them with a single edge that is assigned
the sum of the costs of the merged edges. Each node i ∈ N is
assigned two utility values di(Q) ≡ ∑

l∈Q dl
i and di(Qc) ≡∑

l∈Qc dl
i . See for example Figure 5.

Then, it is easy to see that solving Problem 3.2 is equivalent
to finding an optimal 2-partition separating sQ and sQc in the
2-server disconnection problem. Hence, by Corollary 2.10,
Problem 3.2 is solvable in polynomial time.

The set Q in Problem 3.2 may be empty when we want
an optimal partition N = (M; N\M) such that M is the
set of nodes disconnected from all of the servers. In this
case, the transformation above will result in a single-server
problem. Therefore, in this case, Corollary 2.9 implies the
polynomiality of Problem 3.2.

The value z∗
2 can be computed simply by solving Prob-

lem 3.2 for all Q ⊆ K and taking the maximum of the optimal

FIG. 5. Transformation to a 2-server problem to compute an optimal 2-partition with Q = {s1, s2}. (For simplicity,
only the positive cost edges are illustrated; thus the graph is not complete.)

NETWORKS—2007—DOI 10.1002/net 279

values for the Qs. It requires solving O(2k) min-cut problems
whose sizes are essentially the same as that of the original
problem.

Proposition 3.3. z∗
2 can be computed within the time for

O(2k) applications of a min-cut algorithm.

3.2. Approximation of z∗
ps with z∗

2

In Section 3.1, we saw that z∗
2 is polynomially computable

for a fixed k. As p increases, z∗
p becomes more difficult to

compute. For instance, when k = p = 3, if dl
i = 0 for

l = 1, 2, 3 and for every i ∈ N , to compute z∗
3 is equivalent

to the minimum 3-terminal cut problem. Hence, even for a
fixed k, p = 2 is the maximum for which z∗

p is polynomially
computable.

This observation motivates us to consider z∗
2 as an approx-

imation of z∗
p for p ≥ 3.

Proposition 3.4.

z∗
2 ≥

(
1

2
+ 1

2k+1 − 2

)
z∗

k+1.

Proof. Let N ∗ be a (k + 1)-partition whose objective
value is z∗

k+1. We write N ∗ = (N∗
0 ; N∗

1 ; . . . ; N∗
k), where N∗

l ,
l ∈ K , is the set of nodes connected to the server l, and
N∗

0 is the set of nodes disconnected from all of the servers.
Accordingly, the set of edges F∗ whose removal results in
N ∗ can be also decomposed: for l, l′ ∈ K with l < l′, let

F∗
ll′ = {

e = (i, j) : i ∈ N∗
l , j ∈ N∗

l′ , i < j
}
.

Then F∗ = F∗
0 ∪ F∗

1 ∪ · · · ∪ F∗
k , where, for l = 0, 1, . . . , k,

F∗
l =

⋃
l′<l

F∗
l′l ∪

⋃
l<l′

F∗
ll′ .

In Figure 6a, the notation is illustrated for k = 3.
From now on, for notational convenience, we introduce a

dummy server 0 connected to every node i ∈ N via edges
(0, i) with zero cost. Every node i ∈ N has utility d0

i = 0
for this dummy server. It is easy to confirm that the problem
is equivalent to the original one. With this setting, we can

FIG. 6. (a) Nl’s and Fll’s of a 4-partition. (b) Reduction of a 4-partition N
to a 2-partition (NQ; NQc) with Q = {0, 1}.

consider N∗
0 as the set of nodes connected to the server 0,

and we can treat the sets N∗
0 , N∗

1 , . . ., N∗
k symmetrically. For

instance, writing

K ′ := K ∪ {0},
the objective value (10) for N ∗ is given as

z∗
k+1 = z(N ∗) =

∑
l∈K ′

∑
i∈N∗

l

(
di(K

′) − dl
i

) −
∑
e∈F∗

ce. (13)

For simplicity, let us write

NQ =
⋃
l∈Q

N∗
l , and FQ =

⋃
l∈Q

F∗
l , for Q ⊆ K ′.

Given Q ⊆ K ′, consider the 2-partition (NQ; NQc) obtained
from the (k+1)-partition N ∗. See Figure 6b for the reduction
of the 4-partition N in Figure 6a to the 2-partition (NQ; NQc)

with Q = {0, 1}. Let �Q be the decrease of the objective value
due to this reduction. (Recall that G is complete and hence
the subgraphs induced by NQ and NQc are connected.) Then
�Q is the sum of two values. The first one is the decrease due
to the merging of the subpartition (N∗

l : l ∈ Q) into the single
set NQ. This is exactly the objective value z(N∗

l : l ∈ Q) of
the partition (N∗

l : l ∈ Q) of the |Q|-server disconnection
problem defined on the subgraph of G induced by the node
set NQ. We have

z
(
N∗

l : l ∈ Q
) =

∑
l∈Q

∑
i∈N∗

l

(
di(Q) − dl

i

) −
∑

e∈F∗\FQc

ce. (14)

(Compare (13) and (14).) Similarly, the second value is the
objective value z(N∗

l : l ∈ Qc) of the partition (N∗
l : l ∈

Qc) of the |Qc|-server disconnection problem defined on the
subgraph induced by the node set NQc . To summarize,

�Q = z
(
N∗

l : l ∈ Q
) + z

(
N∗

l : l ∈ Qc) (15)

=

∑

l∈Q

∑
i∈N∗

l

(
di(Q) − dl

i

) −
∑

e∈F∗\FQc

ce

+

∑

l∈Qc

∑
i∈N∗

l

(
di(Q

c) − dl
i

) −
∑

e∈F∗\FQ

ce

 , and

z(NQ; NQc) = z(N ∗) − (
z
(
N∗

l : l ∈ Q
) + z

(
N∗

l : l ∈ Qc)).
(16)

See Figure 7 for an illustration of (16). Now, we take the
summation of (16) over all Qs such that |Q| = q for fixed
1 ≤ q ≤ k to obtain

∑
Q⊆K ′:|Q|=q

z(NQ; NQc) =
(

k + 1

q

)
z∗

k+1

−
∑

Q⊆K ′:|Q|=q

(
z
(
N∗

l : l ∈ Q
) + z

(
N∗

l : l ∈ Qc)).

280 NETWORKS—2007—DOI 10.1002/net

FIG. 7. Decomposition of z(N ∗) into z(NQ; NQc), z(N∗
l : l ∈ Q), and z(N∗

l : l ∈ Qc).

Therefore, by the definition of z∗
2, we get

(
k + 1

q

)
z∗

2 ≥
(

k + 1

q

)
z∗

k+1

−
∑

Q⊆K ′:|Q|=q

(
z
(
N∗

l : l ∈ Q
) + z

(
N∗

l : l ∈ Qc)). (17)

Taking the summation of (17) over q = 1, 2, . . . , k, we have

k∑
q=1

(
k + 1

q

)
z∗

2 ≥
k∑

q=1

(
k + 1

q

)
z∗

k+1

− 2
k∑

q=1

∑
Q⊆K ′:|Q|=q

z
(
N∗

l : l ∈ Q
)
. (18)

The last term is from the symmetry of (15) with respect to Q
and Qc. ■

Lemma 3.5.

∑
Q⊆K ′:|Q|=q

z
(
N∗

l : l ∈ Q
) =

{
0, if q = 1,(

k−1
q−2

)
z∗

k+1, if q ≥ 2.

Proof of Lemma 3.5. The case for q = 1 is trivial.
Hence, suppose |Q| = q ≥ 2 and compare z(N ∗) of (13) and
z(Nl : l ∈ Q) of (14). (See for instance, z(N0; N1; N2; N3) and
z(N0; N1) in Fig. 7.)

Consider any ce for e = (i, j) ∈ F∗ and suppose i ∈ Ns and
j ∈ Nt . It appears also in z(Nl : l ∈ Q) if and only if s, t ∈ Q.

Clearly, there are
(

k−1
q−2

)
combinations of such Qs. Similarly,

for each i ∈ Ns (s 	= t), the term dt
i in z(N ∗) appears also in

z(Nl : l ∈ Q) if and only if s, t ∈ Q. Again, there are
(

k−1
q−2

)
combinations of such Qs.

From these observations, we see that each term of z(N ∗)
appears in z(Nl : l ∈ Q) exactly for

(
k−1
q−2

)
distinct Qs.

Therefore, the lemma follows. ■

Because of Lemma 3.5, (18) implies

k∑
q=1

(
k + 1

q

)
z∗

2 ≥
k∑

q=1

(
k + 1

q

)
z∗

k+1

− 2
k∑

q=2

(
k − 1

q − 2

)
z∗

k+1. (19)

From (19),

(2k+1 − 2)z∗
2 ≥ ((2k+1 − 2) − 2(2k−1 − 1))z∗

k+1, or

z∗
2 ≥

(
1

2
+ 1

2k+1 − 2

)
z∗

k+1.

This completes the proof of Proposition 3.4. ■

It is not difficult to see that the proof of Proposition 3.4
easily extends to p ≤ k + 1, thus giving z∗

2 ≥ (1
2 + 1

2p−2

)
z∗

p .
Also notice that the proof does not depend on the sign of z∗

p
for any p = 2, 3, . . . , k +1. Therefore we have the following:

Corollary 3.6. If z∗
2 ≤ 0, then z∗

p ≤ 0 for p = 3, 4, . . . , k+1
and the trivial solution F = ∅ is optimal. If, by contrast,
z∗

2 > 0, then

z∗
2 ≥

(
1

2
+ 1

2k+1 − 2

)
z∗

p , for p = 3, 4, . . . , k + 1.

Now, we formally describe the approximation algorithm.

Algorithm 3.7. Approximation Algorithm

Step 1. Compute z∗
2.

Step 2. If z∗
2 > 0, return the corresponding 2-partition.

Step 3. Otherwise, return F = ∅ as an optimal solution.

The validity of Algorithm 3.7 immediately follows from
Corollary 3.6. Combining this with Proposition 3.3, we obtain
Theorem 3.1.

4. FURTHER RESEARCH

We proposed a network attack model and established
its inapproximability. We also developed an approximation
algorithm with a constant approximation guarantee for the
problem involving only a few servers. Improving the approx-
imation factor seems a rather challenging problem requiring
a different approach as only z∗

2 among the z∗
ps is computable

in polynomial time (even for fixed k ≥ 3).
It will also be interesting to explore the approximability

of a directed version of the problem modeling cases when the
communication between node pairs is not symmetric.

NETWORKS—2007—DOI 10.1002/net 281

Acknowledgments

The authors are indebted to Young-Soo Myung for the
fruitful discussions that eventually motivated the authors to
perform a tighter analysis of the approximation algorithm.
They also thank two anonymous referees for their helpful
comments and the editor-in-chief, Douglas Shier, for his
careful editorial corrections.

REFERENCES

[1] G. Calinescu, H. Karloff, and Y. Rabani, An improved
approximation algorithm for muliway cut, J Comp Syst Sci
60 (2000), 564–574.

[2] S. Chopra and M.R. Rao, On the multiway cut polyhedron,
Networks 21 (1991), 51–89.

[3] W.H. Cunningham, Optimal attack and reinforcement of a
network, J ACM 32 (1985), 549–561.

[4] E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P.D. Sey-
mour, and M. Yannakakis, The complexity of multiterminal
cuts, SIAM J Comput 23 (1994), 864–894.

[5] R. Engelberg, J. Konemann, S. Leonardi, and J. Naor,
Cut problems in graphs with a budget constraint, Proceed-
ings of the 7th Latin American Symposium on Theoretical
Informatics, Valdivia, Chile, 2006, pp. 435–446.

[6] N. Garg, V.V. Vazirani, and M. Yannakakis, Approximat-
ing max-flow min-(multi)cut theorems and their applications,
SIAM J Comput 25 (1996), 235–251.

[7] S.-P. Hong and B.-C. Choi, Polynomiality of sparsest cuts
with fixed number of sources, Oper Res Lett, Article in Press.

[8] D.R. Karger, P. Klein, C. Stein, M. Thorup, and N.E. Young,
Rounding algorithms for a geometric embedding of minimum
multiway cut, Math Oper Res 29 (2004), 436–461.

[9] C. Martel, G. Nuckolls, D. Sniegowski, and M. Haungs, Com-
puting the disconnectivity of a graph, Technical Report CSE-
2002-38, University of California, Davis, 2002. Available at
http://www.cs.ucdavis.edu/research/tech-reports/.

[10] J.C. Picard and H.D. Ratliff, Minimum cuts and related
problems, Networks 5 (1974), 357–370.

[11] A. Schrijver, A combinatorial algorithm minimizing sub-
modular functions in strongly polynomial time, Journal of
Combinatorial Theory Series B 80 (1999), 346–355.

282 NETWORKS—2007—DOI 10.1002/net

